Renewable Energy, Vol.41, 254-261, 2012
System simulation of a linear concentrating photovoltaic system with an active cooling system
Recent interest in concentrating photovoltaics (CPV) have led to research and development of multiple CPV systems throughout the world. Much of the focus has been on 3D high concentration systems without cell cooling. This research makes use of a system simulation to model a medium 2D solar concentration energy system with an active cooling system. The simulation encompasses the modeling of a GaInP/GaAs/Ge triple-junction solar cell, the fluid and heat transfer properties of the cooling system, and the storage tank. The simulation was coded in Engineering Equation Solver and was used to simulate the linear concentrating photovoltaic system (LCPV) under Phoenix, AZ, solar and climactic conditions for a full year. The output data from this simulation was used to evaluate the LCPV system from an economic and environmental perspective, showing that over one year a 6.2 kWp LCPV system would save a residential user $1623 in electricity and water heating, as well as displace 10.35 tons of CO2. (C) 2011 Elsevier Ltd. All rights reserved.
Keywords:Linear concentrating photovoltaic;CPV;Solar thermal;Linear Fresnel lens;Multijunction cell;Concentrating PV/T system