Renewable Energy, Vol.63, 624-633, 2014
Stochastic analysis and simulation of hydrometeorological processes associated with wind and solar energy
The current model for energy production, based on the intense use of fossil fuels, is both unsustainable and environmentally harmful and consequently, a shift is needed in the direction of integrating the renewable energy sources into the energy balance. However, these energy sources are unpredictable and uncontrollable as they strongly depend on time varying and uncertain hydrometeorological variables such as wind speed, sunshine duration and solar radiation. To study the design and management of renewable energy systems we investigate both the properties of marginal distributions and the dependence properties of these natural processes, including possible long-term persistence by estimating and analyzing the Hurst coefficient. To this aim we use time series of wind speed and sunshine duration retrieved from European databases of daily records. We also study a stochastic simulation framework for both wind and solar systems using the software system Castalia, which performs multivariate and multi-time-scale stochastic simulation, in order to conduct simultaneous generation of synthetic time series of wind speed and sunshine duration, on yearly, monthly and daily scale. (C) 2013 Elsevier Ltd. All rights reserved.
Keywords:Wind speed;Sunshine duration;Long term-persistence;Hurst coefficient;Marginal distributions;Multivariate stochastic simulation