화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.205, No.2, 417-422, 1998
Surface properties of fluorosilicone copolymers and their surface modification effects on PVC film
The fluorosilicone copolymers were synthesized using a fluorine-containing monomer and silicone-containing monomers by free-radical random copolymerization, and their surface properties and surface modification ability were investigated. The fluorine-containing monomer used was perfluoroalkyl ethyl acrylate (FA), and the silicone-containing monomers used were 3-[tris(trimethylsilyloxy)silyl]propyl methacrylate (SiMA), vinyltrimethoxy silane (VTMS), and vinyltriethoxy silane (VTES). The surface free energies of the fluorosilicone copolymers prepared were estimated from the contact angle data measured by sessile-drop method. And, the surface free energies of poly(vinyl chloride) (PVC) films modified by the fluorosilicone copolymers were also analyzed using the contact angle data. The fluorosilicone copolymers exhibit the surface free energies of about 8-23 dyn/cm dependent on the molecular weight of the fluorosilicone copolymers. The surface free energies of the fluorosilicone copolymers decrease with increasing molecular weight in the range of 2,000-10,000 (M-w). Among the fluorosilicone copolymers prepared in this study, PFAr-PSiMA was found to be the most effective as a surface modification agent for PVC film. The inherent surface free energy of PFA-r-PSiMA was estimated to be about 9.0 dyn/cm. The desirable molecular weight of PFA-r-PSiMA seems to be more than 4,000 (M-w). However, it is expected that the fluorosilicone copolymers having the molecular weight of much higher than 10,000 (M-w) may not be suitable as surface modification additives because their compatibility with other polymers will decrease with the molecular weight. The optimum concentration of PFA-r-PSiMA added to PVC film is about 1.0 wt.%. PFA-r-PSiMA is expected to be an effective additive for surface modification of PVC films.