화학공학소재연구정보센터
Solar Energy Materials and Solar Cells, Vol.107, 272-282, 2012
Local rear contacts to silicon solar cells by in-line high-rate evaporation of aluminum
We contact p-type wafers and boron-diffused layers by laser ablation of a passivating aluminum oxide and silicon nitride stack and subsequent in-line high-rate evaporation of aluminum. We measure saturation current densities at the base contacts of 2.5 x 10(6)-1.9 x 10(7) fA/cm(2) for base resistivities of 0.5-3.8 Omega cm and 491-905 fA/cm(2) for the contacts to boron-diffused layers of sheet resistances of 23-86 Omega/sq. The contact resistivity of Al layers to p-type silicon with surface doping densities of 4 x 10(15)-3 x 10(19) cm(-3) is in the range of 4-0.1 m Omega cm(2), respectively. The measured contact properties allow for the fabrication of highly efficient 'passivated emitter and rear cells' (PERC) and 'passivated emitter and rear totally diffused cells' (PERT). Numerical simulations show that evaporated rear contacts in combination with screen printed contacts at the front allow for energy conversion efficiencies of 20.6% and of 21.1%, for PERC and PERT cells, respectively. The simulated free energy losses show that such cells are not limited by the in-line evaporated point contacts on the rear side. (C) 2012 Elsevier B.V. All rights reserved.