화학공학소재연구정보센터
Solar Energy Materials and Solar Cells, Vol.122, 197-207, 2014
Absolute upconversion quantum yield of beta-NaYF4 doped with Er3+ and external quantum efficiency of upconverter solar cell devices under broad-band excitation considering spectral mismatch corrections
For applications to harvest solar energy, it is essential to characterize upconverter materials under broadband excitation at reasonable irradiance levels achievable by concentration of solar radiation. We present a method to determine the absolute upconversion quantum yield (UCQY) under broad-band excitation by photoluminescence measurements. We introduce a spectral mismatch correction that allows calculating the UCQY that can be expected under illumination with the solar spectrum with a certain solar concentration. Applying these methods to beta-NaYF4 doped with 25%Er3+, we determine an external UCQY of 2.0% in the spectral range from 1450 nm to 1600 nm under a comparatively low solar concentration of only 50 suns. This value corresponds to a potential increase of the short-circuit current density of 3.89 mA/cm(2). Subsequently, we measure the external quantum efficiency due to upconversion of sub-band-gap photons for a bifacial silicon solar cell with upconverter attached to its rear side under the same broad-band excitation. We determine an additional short-circuit current density due to upconversion of 4.03 mA/cm(2) for a solar concentration of only 77 suns. This value agrees very well, with the expected additional short-circuit current density due to upconversion, calculated from the external UCQY values as determined by the photoluminescence measurements, by considering the transmittance of the solar cell for sub-band-gap photons and the external quantum efficiency of the solar cell for photons emitted by the upconverter. Finally, a comparison with different literature values based on a set of figures of merit shows that our results currently constitute the largest enhancement of the short-circuit current density due to upconversion. (C) 2013 Elsevier B.V. All rights reserved.