화학공학소재연구정보센터
Solar Energy, Vol.84, No.7, 1103-1110, 2010
Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production
Carbon dioxide is an environmental benign natural working fluid and has been proposed as a working media for a solar-driven power system In the current work, the dynamic performance of a small scale solar-driven carbon dioxide power system is analyzed by dynamic simulation tool TRNSYS 16 (Klein et al., 2004) and Engineering Equation Solver (EES) (Klein, 2004) using co-solving technique Both daily performance and yearly performance of the proposed system have been simulated Different system operating parameters, which will influence the system performance, have been discussed. Under the Swedish climatic condition, the maximum daily power production is about 12 kW h and the maximum monthly power production is about 215 kW h with the proposed system working conditions Besides the power being produced, the system can also produce about 10 times much thermal energy. which can be used for space heating, domestic hot water supply or driving absorption chillers The simulation results show that the proposed system is a promising and environmental benign alternative for conventional low-grade heat source utilization system (C) 2010 Elsevier Ltd All rights reserved.