Journal of Colloid and Interface Science, Vol.210, No.2, 309-319, 1999
A thermodynamic model for gas adsorption isotherms
In this paper based on the principle of solution thermodynamics for gas-solid equilibrium, a relation is developed to express gas adsorption isotherms. An activity coefficient model based on weight fraction of sorbate in the solid phase has been derived that well describes the behavior of various gases on different types of adsorbents. The proposed model has been evaluated and compared with four other models commonly used for gas adsorption isotherms in the literature. For 12 different systems at various isotherms for the temperature range -128 to 100 degrees C and the pressure range 0.02 to 1219 kPa for 689 data points, the proposed model predicts equilibrium pressure with an average deviation of 5.3%, which is about half of the error obtained from other methods. The proposed model clearly outperforms other available methods such as the vacancy solution theory, the ideal adsorption solution model, and other various modified forms of the Langmuir isotherm. Unique features of the proposed model are its simplicity, generality, and accuracy over the entire pressure and temperature ranges.
Keywords:13X MOLECULAR-SIEVES;EQUILIBRIUM ADSORPTION;ACTIVATED CARBON;POLLUTANTS;ETHYLENE;MIXTURES;EQUATION;ETHANE