Solar Energy, Vol.86, No.1, 289-300, 2012
Numerical simulation of underground Seasonal Solar Thermal Energy Storage (SSTES) for a single family dwelling using TRNSYS
A system for capturing and storing solar energy during the summer for use during the following winter has been simulated. Specifically, flat plate solar thermal collectors attached to the roof of a single family dwelling were used to collect solar thermal energy year round. The thermal energy was then stored in an underground fabricated Seasonal Solar Thermal Energy Storage (SSTES) bed. The SSTES bed allowed for the collected energy to supplement or replace fossil fuel supplied space heat in typical single family homes in Richmond, Virginia, USA. TRNSYS was used to model and simulate the winter thermal load of a typical Richmond home. The simulated heating load was found to be comparable to reported loads for various home designs. TRNSYS was then used to simulate the energy gain from solar thermal collectors and stored in an underground, insulated, vapor proof SSTES bed filled with sand. Combining the simulation of the winter heat demand of typical homes and the SSTES system showed reductions in fossil fuel supplied space heating in excess of 64%. The optimization of the SSTES scheme showed that a 15 m(3) bed volume, 90% of the south facing roof, and a flow rate of 11.356 lpm through the solar collectors were optimal parameters. The overall efficiency of the system ranged from 50% to 70% when compared to the total useful energy gain of the solar collectors. The overall efficiency was between 6.1% and 7.6% when compared to the total amount of solar radiation incident upon the solar collectors. (C) 2011 Elsevier Ltd. All rights reserved.