Journal of Industrial and Engineering Chemistry, Vol.20, No.5, 2969-2974, September, 2014
Gas-phase mercury removal through sulfur impregnated porous carbon
E-mail:
Gas phase mercury removal is a vital unit operation in gas processing industries. The present work attempts to prepare a sulfur impregnated carbon at optimized experimental conditions and compares its elemental adsorption capacity with the number of commercially available carbon based adsorbents. The effect of adsorption temperature on mercury adsorption capacity has been estimated for the prepared sulfur impregnated carbon. The adsorption capacity was found to increase with increase in adsorption temperature owing to the chemisorption nature of the adsorption. The adsorption isotherms were generated at three different temperatures and were found to close adhere to the Langmuir Isotherm model. The adsorption capacity was found to increase until 140 ℃, while decrease beyond, which was attributed to the softening and agglomeration of sulfur. The maximum adsorption capacity of 4325 mg/g was observed at a temperature of 140 ℃. A comparison of the relative adsorption capacity of various adsorbent at 30 ℃, revealed the adsorption capacity of the sulfur impregnated carbon prepared in the present work much higher than the commercially available carbons. The high adsorption capacities with
simple preparation techniques favor the commercial mercury adoption process.
- Pavlish JH, Holmes MJ, Benson SA, Crocker CR, Galbreath KC, Fuel Process. Technol., 85(6-7), 563 (2004)
- Abbott J, Oppenshaw P, Mercury removal technology and its applications, in:Proceedings of the Eighty-First Annual Convention Gas Processors Association, Tulsa, OK, 2002.
- Rios J, Removal of trace mercury contaminants from gas and liquid streams in the LNG and gas processing industry, in: Proceedings of the Seventy-Seventh Annual Convention Gas Processors Association, Tulsa, OK, (1998), p. 191.
- Vidic RD, Siler DP, Carbon, 39(1), 3 (2001)
- Granite EJ, Pennline HW, Hargis RA, Ind. Eng. Chem. Res., 39(4), 1020 (2000)
- Granite EJ, Pennline HW, Ind. Eng. Chem. Res., 41(22), 5470 (2002)
- McLarnon CR, Granite EJ, Pennline HW, Fuel Process. Technol., 87(1), 85 (2005)
- Nolan PS, Redinger KE, Amrhein GT, Kudlac GA, Fuel Process. Technol., 85(6-7), 587 (2004)
- Liu W, Vidic RD, Brown TD, Environ. Sci. Technol., 34(3), 483 (1999)
- Liu W, Vidic RD, Brown TD, Environ. Sci. Technol., 34(1), 154 (1999)
- Liu W, Vidic RD, Brown TD, Environ. Sci. Technol., 34(1), 154 (2000)
- Liu W, Vidic RD, Brown TD, Environ. Sci. Technol., 34(3), 483 (2000)
- O'Dowd WJ, Hargis RA, Granite EJ, Pennline HW, Fuel Process. Technol., 85(6-7), 533 (2004)
- Mei ZJ, Shen ZM, Yuan T, Wang WH, Han HB, Fuel Process. Technol., 88(6), 623 (2007)
- Diamantopoulou I, Skodras G, Sakellaropoulos GP, Fuel Process. Technol., 91(2), 158 (2010)
- Tan Z, et al., Carbon, 50(2), 362 (2012)
- Tan ZQ, Qiu JR, Zeng HC, Liu H, Xiang J, Fuel, 90(4), 1471 (2011)
- Scala F, Chirone R, Lancia A, Fuel, 90(6), 2077 (2011)
- Karatza D, et al., J. Environ. Sci., 23(9), 1578 (2011)
- Shen Z, et al., J. Environ. Sci., 22(11), 1814 (2010)
- Skodras G, Diamantopouiou I, Zabaniotou A, Stavropoulos G, Sakellaropoulos GP, Fuel Process. Technol., 88(8), 749 (2007)
- Liu W, Vidic RD, Brown TD, Environ. Sci. Technol., 32(4), 531 (1998)
- Lee SJ, et al., Atmos. Environ., 38(29), 4887 (2004)
- Zeng HC, Jin F, Guo J, Fuel, 83(1), 143 (2004)
- Lee SH, Rhim YJ, Cho SP, Baek JI, Fuel, 85(2), 219 (2006)
- Hutson ND, Attwood BC, Scheckel KG, Environ. Sci. Technol., 41(5), 1747 (2007)
- Morency JR, Filtr. Sep., 39(7), 24 (2002)
- Hassett DJ, Eylands KE, Fuel, 78(2), 243 (1999)
- Rashid K, et al., Clean Technol. Environ. Policy, 1 (2012)
- Reddy KS, Al Shoaibi KA, Srinivasakannan C, Carbon, 52, p623 (2013)
- Sinha RK, Walker PL, Carbon, 10(6), 754 (1972)
- Krishnan SV, Gullett BK, Jozewicz W, Environ. Sci. Technol., 28(8), 1506 (1994)
- Otani Y, et al., Environ. Sci. Technol., 22(6), 708 (1988)
- Karatza D, et al., Exp. Therm. Fluid Sci., 21(1-3), 150 (2000)