화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.5, 3179-3185, September, 2014
Synthesis and characterization of wurtzite ZnS nanoplates through simple solvothermal method with a novel approach
E-mail:
A thio Schiff-base-assisted solvothermal process has been developed to synthesize zinc sulfide (ZnS) nanoplates via the reaction between a metal salt, Zn(NO3)2·6H2O and thio Schiff-base of 2-(benzylidene amino) benzenethiol (C13H11NS) as a new precursor. XRD, TEM, SEAD, UV-vis spectroscopy, TG-DTA and FT-IR spectra were employed to characterize the obtained product. The results of this paper indicate that the shape and size of zinc sulfide nanoplates can be controlled systematically by setting certain reaction parameters, such as the reaction temperature and duration and type of solvent. Zinc sulfide nanoplates with different morphology and size have been successfully prepared.
  1. Weller H, Angew. Chem.-Int. Edit., 32, 41 (1993)
  2. Nanda J, Sapra S, Sarma DD, Chandrasekharan N, Hodes G, Chem. Mater., 12, 1018 (2000)
  3. Steigerwald ML, Brus LE, Acc. Chem. Res., 23, 183 (1990)
  4. Alivisatos AP, J. Phys. Chem., 100(31), 13226 (1996)
  5. Jun YW, Choi CS, Cheon J, Chem. Commun., 101 (2001)
  6. Jun YW, Koo JE, Cheon J, Chem. Commun., 1243 (2001)
  7. Arcoleo V, Goffredi M, Liveri VT, J. Therm. Anal. Calorim., 518, 125 (1998)
  8. Zhang H, Zhang SY, Pan S, Li GP, Hou JH, Nanotechnology, 15, 945 (2004)
  9. Kar S, Biswas S, Chaudhuri S, Nanotechnology, 16, 737 (2005)
  10. Zhao QT, Hou LS, Huang RA, Inorg. Chem. Commun., 6, 971 (2003)
  11. Pan ZW, Dai ZR, Wang ZL, Science, 291(5510), 1947 (2001)
  12. Yu SH, Yoshimura M, Adv. Mater., 14(4), 296 (2002)
  13. Hu JQ, Bando Y, Zhan JH, Li YV, Sekiguchi T, Appl. Phys. Lett., 83, 4414 (2003)
  14. Hu JQ, Bando Y, Zhan JH, Golberg D, Adv. Funct. Mater., 15(5), 757 (2005)
  15. Ma YR, Qi LM, Ma JM, Cheng HM, Langmuir, 19(9), 4040 (2003)
  16. Yan CL, Xue DF, J. Phys. Chem. B, 110(51), 25850 (2006)
  17. Yan X, Michael E, Komarneni S, Brownson JR, Yan Z, Ceram. Int., 39, 4757 (2013)
  18. Zhao JG, Zhang HH, Superlattices Microstruct., 51, 663 (2012)
  19. Toedheide K, in: Franks F (Ed.), Water: A Comprehensive Treatise, Plenum, New York, 1972, pp. 463-514.
  20. Seward TM, Phys. Chem. Earth, 13, 113 (1981)
  21. Ni YH, Wang F, Liu HJ, Yin G, Hong HJ, Ma X, Xu Z, J. Cryst. Growth, 262(1-4), 399 (2004)
  22. Xiong Q, Chen G, Acord JD, Nano Lett., 4, 1663 (2004)
  23. Yao WT, Yu SH, Pan L, Small, 1, 320 (2005)
  24. Samuelsson J, Enmark M, Forssen P, Fornstedt T, Chem. Eng. Technol., 35(1), 149 (2012)
  25. Baskoutas S, Terzis AF, Schommers W, J. Comput. Theor. Nanosci., 3, 269 (2006)
  26. Onwudiwe DC, Ajibade PA, Mater. Lett., 65, 3258 (2011)
  27. Salavati-Niasari M, Davar F, Mazaheri M, J. Alloy. Compd., 470, 502 (2009)
  28. Salavati-Niasari M, Davar F, Loghman-Estarki MR, J. Alloy. Compd., 494, 199 (2010)
  29. Salavati-Niasari M, Loghman-Estarki MR, Davar F, J. Alloy. Compd., 475, 782 (2009)
  30. Sobhani A, Salavati-Niasari M, Sobhani M, Mater. Sci. Semicond. Process, 16, 410 (2013)
  31. Liu J, Ma J, Liu Y, Song Z, Sun Y, Fang J, Liu Z, J. Alloy. Compd., 486, 40 (2009)
  32. Wang L, Dai J, Liu X, Zhu Z, Huang X, Wu P, Ceram. Int., 38, 1873 (2012)
  33. Thi T, Duc N, McVitie S, Nama NH, Vu L, DinhCanh T, Opt. Mater., 33, 308 (2011)
  34. Liu C, Ji Y, Tan T, J. Alloy. Compd., 570, 23 (2013)
  35. Dong F, Guo Y, Zhang J, Li Y, Yang L, Fang Q, KaiJiang H, Mater. Lett., 97, 59 (2013)