화학공학소재연구정보센터
Thin Solid Films, Vol.529, 173-176, 2013
Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor
An extended-gate field-effect transistor (EGFET) of coaxial-structured ZnO/silicon nanowires as pH sensor was demonstrated in this paper. The oriented 1-mu m-long silicon nanowires with the diameter of about 50 nm were vertically synthesized by the electroless metal deposition method at room temperature and were sequentially capped with the ZnO films using atomic layer deposition at 50 degrees C. The transfer characteristics (I-DS-V-REF) of such ZnO/silicon nanowire EGFET sensor exhibited the sensitivity and linearity of 46.25 mV/pH and 0.9902, respectively for the different pH solutions (pH 1-pH 13). In contrast to the ZnO thin-film ones, the ZnO/silicon nanowire EGFET sensor achieved much better sensitivity and superior linearity. It was attributed to a high surface-to-volume ratio of the nanowire structures, reflecting a larger effective sensing area. The output voltage and time characteristics were also measured to indicate good reliability and durability for the ZnO/silicon nanowires sensor. Furthermore, the hysteresis was 9.74 mV after the solution was changed as pH 7 -> pH 3 -> pH 7 -> pH 11 -> pH 7. (C) 2012 Elsevier B.V. All rights reserved.