화학공학소재연구정보센터
Thin Solid Films, Vol.536, 81-87, 2013
The pH-sensitive Pd nanoparticles as ink for ink-jet printing technology and electroless Cu metallic patterns on indium-doped tin oxide substrate
In this work, a method to fabricate copper pattern on an indium-doped tin oxide (ITO) glass substrate is described. This method involves ink-jet printing of a pH-sensitive chitosan-g-polyvinyl acetate/Pd nanoparticle (CTS-g-PVAc-Pd) based ink on an untreated ITO plate to create the catalytic sites, onto which copper is subsequently deposited by an electroless plating method. To prepare the CTS-g-PVAc-Pd nanoparticles, a pH-sensitive chitosan-g-polyvinyl acetate (CTS-g-PVAc) copolymer is utilized to self-reduce Pd nanoparticles. The pH-sensitive CTS chains function as stabilizing agent for noble metal nanoparticles in acidic ink solution. On the other hand, CTS-g-PVAc copolymers convert to hydrophilic CTS-g-poly(vinyl alcohol) via alkali hydrolysis during the electroless copper plating. Therefore, the copper film with dramatically enhanced adhesion is formed on the surface of ITO glass without special pretreatment step before electroless deposition of copper film. Our results show that this process yields copper line with width down to 60 mu m and ITO plated with the copper coating has good electrical conductivity, with an electrical resistivity of about 5.4 mu Omega cm. (C) 2013 Elsevier B.V. All rights reserved.