Thin Solid Films, Vol.536, 286-290, 2013
Influence of poly(2-methoxy-5-(2'-ethyl)-hexyloxy-p-phenylene vinylene):(6,6)-phenyl C61 butyric acid methyl ester blend ratio on the performance of inverted type organic solar cells based on Eosin-Y-coated ZnO nanorod arrays
The influence of poly(2-methoxy-5-(2'-ethyl)-hexyloxy-p-phenylene vinylene) (MEH-PPV) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) weight ratio on the photovoltaic performance of inverted type organic solar cell based on Eosin-Y-coated ZnO nanorods has been investigated. Experimental results showed that the photovoltaic performance improved with weight ratio of MEH-PPV: PCBM from 1:1 to 1:3 due to better percolation pathway for electron transport and enhanced infiltration of polymer blend into interspace of Eosin-Y-coated ZnO nanorods. However, the overall performance started to decrease at weight ratio of 1: 4 due to the aggregation of PCBM clusters which results in poor polymer blend infiltration. The optimum device at weight ratio of 1: 3 exhibited short circuit current density of 3.95 +/- 0.10 mA cm(-2), open circuit voltage of 0.53 +/- 0.03 V, fill factor of 0.50 +/- 0.03, and power conversion efficiency of 1.02 +/- 0.07 %. (C) 2013 Elsevier B.V. All rights reserved.