Thin Solid Films, Vol.548, 263-269, 2013
Effect of energetic electron beam treatment on transparent conductive ZnO thin films
Undoped and Al-doped ZnO thin films were prepared by a sol-gel spin coating method. The films were exposed to the electron beam at different energies to improve their electrical properties by modifying their film crystallinity. For both the undoped and Al-doped ZnO thin films, the carrier concentration significantly increased and the resistivity decreased after the introduction of the energetic electron beam. Since band gap widening of the undoped and Al-doped ZnO thin films was also observed with exposure to the electron beam, the behaviors and tendencies can be explained by the Burstein-Moss effect. The effects of the electron beam on ZnO thin film properties, including band gap widening, increasing carrier concentration, and significantly decreased resistivity, were similar to the effects of Al doping in ZnO. Finally, by combining electron beam treatment and Al doping of ZnO thin films prepared by a sol-gel method, the resistivity of the sol-gel synthesized ZnO thin film decreased from 5.8 x 10(2) Omega cm to 8.2 x 10(-2) Omega cm. According to the Monte Carlo simulation of electron penetration in the ZnO thin film, the penetration depth increased with electron beam energy, which induced lattice heating and atomic rearrangement by electronic excitation in a collision cascade. (C) 2013 Elsevier B. V. All rights reserved.