화학공학소재연구정보센터
Thin Solid Films, Vol.548, 636-640, 2013
Highly efficient ZnO porous nanostructure for CdS/CdSe quantum dot sensitized solar cell
Porous zinc oxide (ZnO) nanostructure has been prepared by simple one step oxalate route for the fabrication of CdS/CdSe quantum dot sensitized solar cells (QDSSC). The porous ZnO photoanode is sensitized with CdS and CdS/CdSe quantum dots by simple chemical bath deposition technique by controlling the surface agglomeration of quantum dots over ZnO photoanode. The performances of the QDSSCs are examined with both platinum and copper sulfide counter electrodes. The photovoltaic properties of the cells are determined using current-voltage characterization under 1 sun illumination. The transport properties of the QDSSCs have been studied using electrochemical impedance spectroscopy and open circuit voltage decay analysis. The combination of CdS/CdSe/ZnS successive layers over ZnO with CuS counter electrode shows an excellent performance with a maximum power to conversion efficiency of 4.09% under 1 sun illumination. (C) 2013 Elsevier B.V. All rights reserved.