화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.11, 1985-1993, November, 2014
Optimal Ru particle size for selective CO oxidation in H2 over Ru/κ-Al2O3
E-mail:
Ru/κ-Al2O3 catalysts with different Ru dispersions were prepared by controlling the pretreatment conditions, and were applied to selective CO oxidation in H2. The prepared catalysts were characterized by N2 physisorption, transmission electron microscopy, temperature-programmed oxidation, CO chemisorption, and O2 chemisorption. The Ru dispersion decreased with increasing reduction and oxidation temperature of Ru/κ-Al2O3. The turnover frequency for CO oxidation in H2 increased as the Ru particle size increased from 2.2 to 3.6 nm, whereas the apparent activation energy decreased as the Ru particle size increased from 2.2 to 3.4 nm for 1% Ru/κ-Al2O3. However, larger Ru particles were not always favorable for the selective CO oxidation in H2 because H2 oxidation was also promoted by these catalysts. In the case of the 1 wt% Ru/κ-Al2O3 catalyst, Ru nanoparticles of approximately 3 nm appeared to be optimal for the selective CO oxidation in H2 on the basis that they provided the widest temperature window, resulting in complete removal of CO even in the presence of H2O and CO2.
  1. Song CS, Catal. Today, 77(1-2), 17 (2002)
  2. Park ED, Lee D, Lee HC, Catal. Today, 139, 280 (2009)
  3. Liu K, Wang A, Zhang T, ACS Catal., 2, 1165 (2012)
  4. Avgouropoulos G, Ioannides T, Matralis H, Appl. Catal. B: Environ., 56(1-2), 87 (2005)
  5. Qiao BT, Wang AQ, Lin J, Li L, Su DS, Zhang T, Appl. Catal. B: Environ., 105(1-2), 103 (2011)
  6. Zhao ZK, Jin RH, Bao T, Lin XL, Wang GR, Appl. Catal. B: Environ., 110, 154 (2011)
  7. Zhang QH, Liu XH, Fan WQ, Wang Y, Appl. Catal. B: Environ., 102(1-2), 207 (2011)
  8. Park JE, Park ED, Catal. Lett., 144(4), 607 (2014)
  9. Ko EY, Park ED, Seo KW, Lee HC, Lee D, Kim S, Catal. Today, 116(3), 377 (2006)
  10. Oh SH, Sinkevitch RM, J. Catal., 142, 254 (1993)
  11. Kim YH, Park ED, Lee HC, Lee D, Lee KH, Catal. Today, 146, 253 (2009)
  12. Xu GW, Zhang ZG, J. Power Sources, 157(1), 64 (2006)
  13. Worner A, Friedrich C, Tamme R, Appl. Catal. A: Gen., 245(1), 1 (2003)
  14. Chin SY, Alexeev OS, Amiridis MD, Appl. Catal. A: Gen., 286(2), 157 (2005)
  15. Echigo M, Tabata T, Appl. Catal. A: Gen., 251(1), 157 (2003)
  16. Han YF, Kinne M, Behm RJ, Appl. Catal. B: Environ., 52(2), 123 (2004)
  17. Kim YH, Park ED, Lee HC, Lee D, Appl. Catal. A: Gen., 366(2), 363 (2009)
  18. Kim YH, Park ED, Appl. Catal. B: Environ., 96(1-2), 41 (2010)
  19. Kim YH, Yim SD, Park ED, Catal. Today, 185(1), 143 (2012)
  20. Rosso I, Antonini M, Galletti C, Saracco G, Specchia V, Top. Catal., 30, 475 (2004)
  21. Joo SH, Park JY, Renzas JR, Butcher DR, Huang W, Somorjai GA, Nano Lett., 10, 2709 (2010)
  22. Qadir K, Joo SH, Mun BS, Butcher DR, Renzas JR, Aksoy F, Liu Z, Somorjai GA, Park JY, Nano Lett., 12, 5761 (2012)
  23. Kim YH, Park JE, Lee HC, Choi SH, Park ED, Appl. Catal. B: Environ., 127, 129 (2012)
  24. Kipnis M, Volnina E, Appl. Catal. B: Environ., 98(3-4), 193 (2010)
  25. Han YF, Kahlich MJ, Kinne M, Behm RJ, Phys. Chem. Chem. Phys., 4, 389 (2004)
  26. Tada S, Kikuchi R, Urasaki K, Satokawa S, Appl. Catal. A: Gen., 404(1-2), 149 (2011)
  27. Atalik B, Uner D, J. Catal., 241(2), 268 (2006)
  28. Hershowitz M, Holliday R, Cutlip MB, Kenney CN, J. Catal., 74, 408 (1982)
  29. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B, J. Catal., 144, 175 (1993)
  30. Haruta M, J. New Mater. Electrochem. Syst., 7, 163 (2004)
  31. Gao F, Goodman DW, Phys. Chem. Chem. Phys., 14, 6688 (2012)
  32. Over H, Chem. Rev., 112(6), 3356 (2012)
  33. Narkhede V, Aβmann J, Muhler M, Z. Phys. Chem., 219, 979 (2005)
  34. Kiss JT, Gonzalez RD, J. Phys. Chem., 88, 892 (1984)
  35. Aβmann J, Crihan D, Knapp M, Lundgren E, Loffler E, Muhler M, Narkhede V, Over H, Schmid M, Seitsonen AP, Varga P, Angew. Chem. Int. Ed., 44, 917 (2005)
  36. Qadir K, Kim SM, Seo H, Mun BS, Akgul FA, Liu Z, Park JY, J. Phys. Chem., C, 117, 13108 (2013)