화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.11, 2003-2007, November, 2014
Direct ethanol production from dextran industrial waste water by Zymomonas mobilis
E-mail:
The direct production of ethanol from dextran industrial waste water was investigated by using Zymomonas mobilis via batch and semi-continuous fermentation mode. In batch fermentation, pretreated waste water (unsterilized and sterilized), pH value (3.8 and 6.0), and Mg2+ (with and without) was compared with OD600, sugar and ethanol concentration. After 24 h fermentation, sugar in the dextran waste water was almost exhausted, and the amount of ethanol accumulated reached 24.33-29.92 g/l, which is nearly 99% of the theoretical yield of ethanol. Kinetic parameters of Z. mobilis in batch fermentation were also investigated. The raw dextran waste water was also used in semi-continuous fermentation. After 48 h fermentation, the production of ethanol was 28.65 g/l. These results indicated that dextran waste water may be used as a candidate substrate and Z. mobilis could convert the raw material into ethanol directly.
  1. Olofsson K, Bertilsson M, Liden G, Biotechnol. Biofuels., 1, 1 (2008)
  2. Govumoni SP, Koti S, Kothagouni SY, Linga VR, Carbohyd. Polym., 91, 646 (2013)
  3. Galbe M, Zacchi G, Biomass Bioenerg., 46, 70 (2012)
  4. Van Dyk JS, Pletschke BI, Biotechnol. Adv., 30, 1458 (2012)
  5. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW, Biotechnol. Bioeng., 109(4), 1083 (2012)
  6. Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, et al., Nat. Biotechnol., 23, 63 (2005)
  7. Matsushika A, Inoue H, Kodaki T, Sawayama S, Appl. Microbiol. Biotechnol., 84(1), 37 (2009)
  8. Jang YS, Park JM, Choi S, Choi YJ, Seung DY, Ch JH, et al., Biotechnol. Adv., 30, 989 (2012)
  9. Kambam PKR, Henson MA, Biofuels., 1, 729 (2010)
  10. Zhang W, Geng A, Biotechnol. Biofuels., 5, 46 (2012)
  11. Zhang M, Eddy C, Deanda K, Finkestein M, Picataggio S, Science, 267(5195), 240 (1995)
  12. Deanda K, Zhang M, Eddy C, Picataggio S, Appl. Env. Microbiol., 62, 4465 (1996)
  13. Linger JG, Adney WS, Darzins A, Appl. Environ. Microbiol., 76, 6360 (2010)
  14. Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO, Biofuels., 237 (2007)
  15. Zhou S, Yomano LP, Shanmugam KT, Ingram LO, Biotechnol. Lett., 27(23-24), 1891 (2005)
  16. Kim Y, Ingram LO, Shanmugam KT, Appl. Environ. Microbiol., 73, 1766 (2007)
  17. Wang Y, Manow R, Finan C, Wang J, Garza E, Zhou S, J. Ind. Microbiol. Biotechnol., 38, 1371 (2010)
  18. Causey TB, Zhou S, Shanmugam KT, Ingram LO, Proc. Natl. Acad. Sci. USA, 100, 825 (2003)
  19. Dunlop M, Biotechnol. Biofuels., 4, 32 (2011)
  20. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G, Science, 314, 1565 (2006)
  21. Pienkos P, Zhang M, Cellulose., 16, 743 (2009)
  22. He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH, Appl. Microbiol. Biotechnol., 95(1), 189 (2012)
  23. He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, et al., Biotechnol. Biofuels., 5, 75 (2012)
  24. Ross AB, Jones JM, Kubacki ML, Bridgeman T, Bioresour. Technol., 99(14), 6494 (2008)
  25. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ, Bioresour. Technol., 108, 83 (2012)
  26. Tan IS, Lam MK, Lee KT, Carbohyd. Polym., 94, 561 (2013)
  27. Brown DE, McAvoy A, J. Chem. Technol. Biotechnol., 48, 405 (1990)
  28. Goodman AE, Rogers PL, Scotnicki M, Appl. Env. Microbiol., 44, 496 (1982)
  29. He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH, Appl. Microbiol. Biotechnol., 95(1), 189 (2012)
  30. He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH, Biotechnol. Biofuel., 5, 75 (2012)
  31. Kim IS, Barrow KD, Rogers PL, Appl. Env. Microbiol., 66, 186 (2000)
  32. Jeon YI, Svenson CJ, Rogers PL, FEMS Microbiol. Lett., 244, 85 (2005)
  33. Jeffries TW, Nat. Biotechnol., 23, 40 (2005)
  34. Swings J, Deley J, Bacterial. Rev., 41, 1 (1977)