Korean Journal of Chemical Engineering, Vol.31, No.11, 2003-2007, November, 2014
Direct ethanol production from dextran industrial waste water by Zymomonas mobilis
E-mail:
The direct production of ethanol from dextran industrial waste water was investigated by using Zymomonas mobilis via batch and semi-continuous fermentation mode. In batch fermentation, pretreated waste water (unsterilized and sterilized), pH value (3.8 and 6.0), and Mg2+ (with and without) was compared with OD600, sugar and ethanol concentration. After 24 h fermentation, sugar in the dextran waste water was almost exhausted, and the amount of ethanol
accumulated reached 24.33-29.92 g/l, which is nearly 99% of the theoretical yield of ethanol. Kinetic parameters of Z. mobilis in batch fermentation were also investigated. The raw dextran waste water was also used in semi-continuous fermentation. After 48 h fermentation, the production of ethanol was 28.65 g/l. These results indicated that dextran waste water may be used as a candidate substrate and Z. mobilis could convert the raw material into ethanol directly.
Keywords:Ethanol;Dextran Industrial Waste Water;Zymomonas mobilis;Batch Fermentation;Kinetic Parameters;Semicontinuous Fermentation
- Olofsson K, Bertilsson M, Liden G, Biotechnol. Biofuels., 1, 1 (2008)
- Govumoni SP, Koti S, Kothagouni SY, Linga VR, Carbohyd. Polym., 91, 646 (2013)
- Galbe M, Zacchi G, Biomass Bioenerg., 46, 70 (2012)
- Van Dyk JS, Pletschke BI, Biotechnol. Adv., 30, 1458 (2012)
- Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW, Biotechnol. Bioeng., 109(4), 1083 (2012)
- Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, et al., Nat. Biotechnol., 23, 63 (2005)
- Matsushika A, Inoue H, Kodaki T, Sawayama S, Appl. Microbiol. Biotechnol., 84(1), 37 (2009)
- Jang YS, Park JM, Choi S, Choi YJ, Seung DY, Ch JH, et al., Biotechnol. Adv., 30, 989 (2012)
- Kambam PKR, Henson MA, Biofuels., 1, 729 (2010)
- Zhang W, Geng A, Biotechnol. Biofuels., 5, 46 (2012)
- Zhang M, Eddy C, Deanda K, Finkestein M, Picataggio S, Science, 267(5195), 240 (1995)
- Deanda K, Zhang M, Eddy C, Picataggio S, Appl. Env. Microbiol., 62, 4465 (1996)
- Linger JG, Adney WS, Darzins A, Appl. Environ. Microbiol., 76, 6360 (2010)
- Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO, Biofuels., 237 (2007)
- Zhou S, Yomano LP, Shanmugam KT, Ingram LO, Biotechnol. Lett., 27(23-24), 1891 (2005)
- Kim Y, Ingram LO, Shanmugam KT, Appl. Environ. Microbiol., 73, 1766 (2007)
- Wang Y, Manow R, Finan C, Wang J, Garza E, Zhou S, J. Ind. Microbiol. Biotechnol., 38, 1371 (2010)
- Causey TB, Zhou S, Shanmugam KT, Ingram LO, Proc. Natl. Acad. Sci. USA, 100, 825 (2003)
- Dunlop M, Biotechnol. Biofuels., 4, 32 (2011)
- Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G, Science, 314, 1565 (2006)
- Pienkos P, Zhang M, Cellulose., 16, 743 (2009)
- He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH, Appl. Microbiol. Biotechnol., 95(1), 189 (2012)
- He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, et al., Biotechnol. Biofuels., 5, 75 (2012)
- Ross AB, Jones JM, Kubacki ML, Bridgeman T, Bioresour. Technol., 99(14), 6494 (2008)
- Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ, Bioresour. Technol., 108, 83 (2012)
- Tan IS, Lam MK, Lee KT, Carbohyd. Polym., 94, 561 (2013)
- Brown DE, McAvoy A, J. Chem. Technol. Biotechnol., 48, 405 (1990)
- Goodman AE, Rogers PL, Scotnicki M, Appl. Env. Microbiol., 44, 496 (1982)
- He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH, Appl. Microbiol. Biotechnol., 95(1), 189 (2012)
- He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH, Biotechnol. Biofuel., 5, 75 (2012)
- Kim IS, Barrow KD, Rogers PL, Appl. Env. Microbiol., 66, 186 (2000)
- Jeon YI, Svenson CJ, Rogers PL, FEMS Microbiol. Lett., 244, 85 (2005)
- Jeffries TW, Nat. Biotechnol., 23, 40 (2005)
- Swings J, Deley J, Bacterial. Rev., 41, 1 (1977)