Macromolecular Research, Vol.22, No.9, 1024-1031, September, 2014
Core-shell type complex gelatin scaffold systems for controlled drug release
E-mail:
Hydrogels are often a favored choice of materials for drug delivery applications. This is due to their excellent bioactive properties such as cell adhesion and proliferation, proteolytic degradation, protein binding, etc. Various hydrogel materials and structures so far have been tested for their efficacy as a scaffold delivery system. Core-shell type hydrogel scaffold system is a structure consisting of a core component in the middle and a shell component completely surrounding the core. Multiple combinations of different crosslinking densities in the core and shell components of the hydrogel scaffolds was constructed and examined. Depending on the ways of combination, our core-shell type hydrogel scaffold structures exhibited different swelling kinetics, degradation rate, encapsulation efficiency and diffusion kinetics. Effects of the crosslinking densities of core and shell components on such factors were evaluated.
- Lin CC, Metters AT, Adv. Drug. Deliv. Rev., 58, 1379 (2006)
- Hoffman AS, Adv. Drug Deliv. Rev., 54, 3 (2002)
- Han N, Johnson J, Lannutti JJ, Winter JO, J. Control. Release, 158, 165 (2012)
- Chen RR, Mooney DJ, Pharm. Res., 20, 1103 (2003)
- He HY, Cao X, Lee LJ, J. Control. Release, 95, 391 (2004)
- Ahn G, Kim Y, Lee SW, Jeong YJ, Son H, Lee D, Macromol. Res., 22(1), 99 (2014)
- Siepmann J, Peppas N, Adv. Drug Deliv. Rev., 48, 139 (2001)
- Amsden B, Macromolecules, 31(23), 8382 (1998)
- Silan C, Akcali A, Otkun MT, Ozbey N, Butun S, Ozay O, Sahiner N, Colloid Surf. B, 89, 248 (2012)
- Pritchard EM, Hu X, Finley V, Kuo CK, Kaplan DL, Macromol. Biosci., 13, 311 (2013)
- Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K, Prog. Polym. Sci., 33, 448 (2008)
- Huang G, Gao J, Hu ZB, John JVS, Ponder BC, Moro D, J. Control. Release, 94, 303 (2004)
- van de Weert M, Jorgensen L, Horn Moeller E, Frokjaer S, Exp. Opin. Drug Deliv., 2, 1029 (2005)
- Huang X, Brazel CS, J. Control. Release, 73, 121 (2001)
- Bertz A, Wohl-Bruhn S, Miethe S, Tiersch B, Koetz J, Hust M, Bunjes H, Menzel H, J. Biotechnol., 163, 243 (2013)
- Streubel A, Siepmann J, Peppas NA, Bodmeier R, J. Control. Release, 69, 455 (2000)
- Mehrotra S, Lynam D, Maloney R, Pawelec KM, Tuszynski MH, Lee I, Chan C, Sakamoto J, Adv. Funct. Mater., 20(6), 878 (2010)
- Lynn DM, Adv. Mater., 19(23), 4118 (2007)
- Chen XY, Wu W, Guo ZZ, Xin JY, Li JS, Biomaterials, 32, 1759 (2011)
- Kathuria N, Tripathi A, Kar KK, Kumar A, Acta Biomater., 5, 406 (2009)
- Ritger PL, Peppas NA, J. Control. Release, 5, 37 (1987)
- Saraydin D, Karadag E, Isikver Y, Sahiner N, Guven O, J. Macromol. Sci. Pure, 41, 419 (2004)