화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.6, 809-814, November, 2014
금 처리를 통한 PEDOT 마이크로튜브 전극의 과산화수소 검출 특성 향상
Enhanced Sensitivity of PEDOT Microtubule Electrode to Hydrogen Peroxide by Treatment with Gold
E-mail:
초록
전류 감응형 바이오센서에 응용하기 위해 전도성 고분자 마이크로튜브 어레이를 제작하였다. Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonic acid)(PEDOT/PSS) composite을 전도성 접착제로 하여 템플릿을 전극에 고정한 후 EDOT을 전기화학적으로 중합하였다. 마이크로튜브 어레이는 자체의 넓은 표면적으로 인해 감도 높은 바이오센서로 응용될 수 있으나, 주요 표적물질 중의 하나인 과산화수소에 대한 전기화학적 반응이 느렸다. 과산화수소 산화에 대한 감도를 향상시키기 위해 어레이 전극에 금을 도포하였다. 증착법과 전기화학적 석출법 두 가지 방법을 시도하여 금을 처리하였는데, 이렇게 처리한 전극은 모두 과산화수소에 대한 반응이 크게 향상되었다. 따라서 전도성 고분자 마이크로튜브 어레이에 금을 도포함으로써 과산화수소를 표적물질로 하는 감도 높은 바이오센서 제작이 가능할 것으로 기대된다.
An array structure of conducting polymer microtubule was fabricated for an amperometric biosensor. 3,4-Ethylenedioxythiophene (EDOT) was electropolymerized in the microporous template membrane with poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonic acid) (PEDOT/PSS) composite as a binder. The array structure can provide enhanced current collecting capability due to large active surface area compared to the macroscopic area of the electrode itself. For a biosensor application, the array electrode was tested for H2O2 detection and showed very sluggish electrochemical response to H2O2. To enhance the detection efficiency to the oxidation of H2O2, gold was treated on the electrode by two different approaches: sputtering and electrochemical deposition. Gold treatment with either method greatly enhanced the sensitivity of the electrode to H2O2. So, conducting polymer microtubule array with gold treatment was expected to be a sensitive amperometric biosensor system based on the detection of H2O2.
  1. Cai Z, Martin CR, J. Am. Chem. Soc., 111, 4138 (1989)
  2. Sukchol K, Thongyai S, Praserthdam P, Sotzing GA, Synth. Met., 179, 10 (2013)
  3. Xia L, Wei Z, Wan M, J. Colloid Interf. Sci., 341, 1 (2011)
  4. Rajesh, Ahuja T, Kumar D, Sensor Actuat. B- Chem., 136, 275 (2009)
  5. Atobe M, Yoshida N, Sakamoto K, Sugino K, Fuchigami T, Electrochim. Acta, 87, 409 (2013)
  6. Lange U, Roznyatovskaya NV, Mirsky VM, Anal. Chim. Acta, 614, 1 (2008)
  7. Parthasarathy RV, Martin CR, Nature, 369(6478), 298 (1994)
  8. Moretto LM, Ugo P, Zanata M, Guerriero P, Martin CR, Anal. Chem., 70, 2163 (1998)
  9. Kros A, van Hovell WFM, Sommerdijk NAJM, Nolte RJM, Adv. Mater., 13(20), 1555 (2001)
  10. Nakabayashi Y, Yoshikawa H, Anal. Sci., 16, 609 (2000)
  11. Wang J, J. Pharmaceut. Biomed. Anal., 19, 47 (1999)
  12. Mathew M, Sandhyarani N, Biosens. Bioelectron., 28, 210 (2011)
  13. Guo CX, Li CM, Phys. Chem. Chem. Phys., 12, 12153 (2010)
  14. Zhou H, Chen H, Luo S, Chen J, Wei W, Kuang Y, Biosens. Bioelectron., 20, 1305 (2005)
  15. Kim B, Cho MS, Kim YS, Son Y, Lee Y, Synth. Met., 153, 149 (2005)
  16. Balamurugan A, Ho KC, Chen SM, Huang TY, Colloid Surface A, 362, 1 (2010)
  17. Park J, Kim J, Son Y, Synth. Met., 156, 714 (2006)
  18. Bard AJ, Faulkner LR, Electrochemical Methods: Fundamentals and Applications, Wiley, New York (2000)
  19. Atta NF, Galal A, Khalifa F, Appl. Surf. Sci., 253(9), 4273 (2007)