화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.52, No.6, 713-719, December, 2014
4성분계 다중반응증류 공정의 시각화
Visualization of Stage Calculations in Quaternary Reactive Distillation with Multiple Reactions
E-mail:
초록
4성분계 다중반응이 반응증류 탑 내에서 발생할 때 증류거동의 변화를 시각화 방법을 통해 분석하였다. 시각화 방법이란 단순 증류의 물질수지에 각 반응에 의한 벡터를 추가하고 이를 공간상에 표현하는 것으로 각 단에서 혼합물의 조성 변화 및 반응의 진척도를 직관적으로 알 수 있다. 또한 이를 통해 주어진 운전조건에서 필요한 총 단수 및 최적 반응 단의 위치를 결정할 수 있다. 본 연구에서는에틸렌글리콜 (Ethylene glycol) 생산공정을 시각화 방법을 통해 분석 하였다. 제안된 시각화 방법을 사용하여 복잡한 실험이나 공정모사 없이 4성분계 다중반응증류 공정에 대한 타당성 평가 및 분석이 가능하다.
When multiple reactions of quaternary mixtures take place in a reactive distillation column, the behavior of composition trajectory is analyzed by a visual-aided method. By adding additional vectors of multiple reactions and visualizing them in composition space, the composition of each component and extent of each reaction on an arbitrary stage can be easily estimated in terms of the composition trajectory and reaction cascade difference points. Moreover, for a given operating conditions, the number of total stages and position of optimum reaction zone can be determined by the visual-aided method. In this study, ethylene glycol synthesis with a side reaction is taken as an example and analyzed by the proposed graphical method. Through this method, the quaternary reactive distillation with multiple reactions can be analyzed without numerous experiments and simulations.
  1. Lee JW, Hauan S, Westerberg AW, Ind. Eng. Chem. Res., 39(4), 1061 (2000)
  2. Malone MF, Doherty MF, Ind. Eng. Chem. Res., 39(11), 3953 (2000)
  3. Taylor R, Krishna R, Chem. Eng. Sci., 55(22), 5183 (2000)
  4. Sundmacher K, Kienle A, “Reactive Distillation - Status and Future Directions,” Wiley-VCH (2002)
  5. Koo Y, Han M, Korean Chem. Eng. Res., 42(1), 44 (2004)
  6. Sahapatsombud U, Arpornwichanop A, Assabumrungrat S, Praserthdam P, Goto S, Korean J. Chem. Eng., 22(3), 387 (2005)
  7. Ponchon M, M. Tech. Mod., 13, 20, 55 (1921)
  8. Savarit R, Arts et Metiers., 65, 142, 78, 241, 66, 307 (1922)
  9. McCabe WL, Thiele EW, Industrial & Engineering Chemistry, 17, 605 (1925)
  10. Hauan S, Westerberg AW, Lien KM, Chem. Eng. Sci., 55(6), 1053 (2000)
  11. Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. Lond., 456, 1953 (2000)
  12. Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. Lond, 456, 1965 (2000)
  13. Lee JW, Westerberg AW, Comput. Chem. Eng., 24(2-7), 639 (2000)
  14. Lee JW, Hauan S, Westerberg AW, Ind. Eng. Chem. Res., 40(12), 2714 (2001)
  15. Lee JW, Westerberg AW, AIChE J., 47(6), 1333 (2001)
  16. Lee JW, Ind. Eng. Chem. Res., 41(18), 4632 (2002)
  17. Chin J, Kattukaran HJ, Lee JW, Ind. Eng. Chem. Res., 43(22), 7092 (2004)
  18. Hauan S, Ciric AR, Westerberg AW, Lien KM, Chem. Eng. Sci., 55(16), 3145 (2000)
  19. Lee JW, Hauan S, Lien KM, Westerberg AW, Chem. Eng. Sci., 55(16), 3161 (2000)
  20. Ciric AR, Gu DY, AIChE J., 40(9), 1479 (1994)
  21. Okasinski MJ, Doherty MF, Ind. Eng. Chem. Res., 37(7), 2821 (1998)
  22. Chen FR, Huss RS, Malone MF, Doherty MF, Comput. Chem. Eng., 24(11), 2457 (2000)