화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.225, No.2, 384-393, 2000
Interfacial properties of two-carbon fiber reinforced polycarbonate composites using two-synthesized graft copolymers as coupling agents
Two model coupling agents, water-dispersible (WDGP) and tetrahydrofuran (THF)-soluble graft copolymers (TSGP), were synthesized for carbon fiber/polycarbonate (PC) composites. WDGP contains a long polyacrylamide (PAAm) chain grafted an a PC backbone, whereas TSGP contains a short grafted PAAm chain. Measurements of the interfacial shear strength (IFSS) and other interfacial properties were evaluated using a fragmentation test for two-fiber composites (TFC) to provide the same loading state. Optimal conditions for the treatment was established as a function of treatment time, temperature, initial concentration, and melting procedure. The amount adsorbed on the carbon fiber was higher for TSGP then for WDGP; the maximum improvements in IFSS for WDGP and TSGP were 54% and 74%, respectively. Mechanisms of energy adsorption for WDGP and intermolecular interaction for TSGP can be considered to contribute differently to IFSS improvement. The improvement in IFSS for both coupling agents may be due to chemical and hydrogen bonding in the interface between functional groups in the carbon fiber and PAAm in the coupling agents and to interdiffusion in the interface between PC in coupling agents and matrix PC.