화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.6, 4261-4266, November, 2014
Evaluation of thermodynamic and kinetic parameters for conducting nanocomposite polypyrrole zirconium titanium phosphate
E-mail:
The kinetics and mechanism for the ion-exchange processes like Mg(II)-H(I), Ca(II)-H(I), Sr(II)-H(I), Ba(II)-H(I), Ni(II)-H(I), Cu(II)-H(I), Mn(II)-H(I) and Zn(II)-H(I) at different temperatures using approximated Nernst.Plank equation under the particle diffusion controlled phenomenon were studied for the polypyrrole zirconiumtitanium phosphate nanocomposite cation exchanger. TEM proves the formation of the nanocomposite cation exchanger. Some physical parameters, i.e. fractional attainment of equilibrium U(τ), self-diffusion coefficients (D0), energy of activation (Ea) and entropy of activation (ΔS°) have been estimated. These results are useful for predicting the ion exchange process occurring on the surface of this cation-exchanger.
  1. Hsu YG, Lin KH, Chiang IL, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 87, 31 (2001)
  2. Lira-Cantu M, Gomez-Romero P, J. Solid State Chem., 147, 601 (1999)
  3. Huang ZH, Qiu KY, Polymer, 38(3), 521 (1997)
  4. Lee LH, Chen WC, Chem. Mater., 13, 1137 (2001)
  5. Dallmann K, Buffon R, Catal. Commun., 1, 9 (2000)
  6. Li H, Zheng Z, Cao M, Cao R, Microporous Mesoporous Mater., 136, 42 (2010)
  7. Chaudhari S, Patil PP, Electrochim. Acta, 53(2), 927 (2007)
  8. Du YJ, Damron M, Tang G, Zheng H, Chu CJ, Osborne JH, Prog. Org. Coat., 41, 226 (2001)
  9. Iwata M, Adachi T, Tomidokoro M, Ohta M, Kobayashi T, J. Appl. Polym. Sci., 88(7), 1752 (2003)
  10. Zhang Y, Zhang HM, Bi C, Zhu XB, Electrochim. Acta, 53(12), 4096 (2008)
  11. Malers JL, Sweikart MA, Horan JL, Turner JA, Herring AM, J. Power Sources, 172(1), 83 (2007)
  12. Honma I, Nishikawa O, Sugimoto T, Nomura S, Nakajima H, Fuel Cells, 2, 52 (2002)
  13. Kumar M, Tripathi BP, Shahi VK, J. Membr. Sci., 340(1-2), 52 (2009)
  14. Nilchi A, Khanchi A, Atashi H, Bagheri A, Nematollahi L, J. Hazard. Mater., 137(3), 1271 (2006)
  15. Lacan P, Guizard C, Legall P, Wettling D, Cot L, J. Membr. Sci., 100(2), 99 (1995)
  16. Tien P, Chau LK, Shieh YY, Lin WC, Wei GT, Chem. Mater., 13, 1124 (2001)
  17. Khan AA, Paquiza L, J. Appl. Polym. Sci., 127(5), 3737 (2013)
  18. Khan AA, Paquiza L, Desalination, 272, 278 (2012)
  19. Khan AA, Paquiza L, Synth. Met., 161, 899 (2011)
  20. Khan AA, Paquiza L, Khan A, J. Mater. Sci., 45, 3610 (2012)
  21. Khan AA, Khan A, Habiba U, Paquiza L, Ahmad S, J. Adv. Res., 2, 341 (2011)
  22. Khan AA, Paquiza L, Desalination, 272(1-3), 278 (2011)
  23. Clearfield A, Medina AS, J. Inorg. Nucl. Chem., 32, 2775 (1970)
  24. Alberti G, Bertrami R, Caseola M, Costantino U, Gupta JP, J. Inorg. Nucl. Chem., 38, 843 (1976)
  25. Saraswat IP, Srivastava SK, Sharma AK, Can. J. Chem., 57, 1214 (1979)
  26. Boyd GE, Adamson AW, Myers LS, J. Am. Chem. Soc., 69, 2836 (1947)
  27. Reichenberg D, J. Am. Chem. Soc., 75, 589 (1953)
  28. Helfferich F, Ion Exchange, McGraw-Hill, New York, 1962.
  29. Nernst W, Z. Phys. Chem., 4, 129 (1889)
  30. Planck M, Annu. Phys. Chem., 39, 161 (1890)
  31. Varshney KG, Gupta A, Singhal KC, Colloids Surf. A: Physicochem. Eng. Asp., 82, 37 (1994)
  32. Gupta AP, Varshney PK, React. Polym., 32, 67 (1997)
  33. Alberti G, Constantino U, J. Chromatogr., 50, 482 (1970)
  34. De AK, Chowdhury K, J. Chromatogr., 101, 63 (1974)
  35. Reilley CN, Schmidt RW, Sadek FS, J. Chem. Educ., 36, 555 (1959)
  36. Kodama S, Fukui K, Mazume A, Ind. Eng. Chem., 45, 1644 (1953)
  37. Helfferich F, Plesset MS, J. Chem. Phys., 28, 418 (1958)
  38. Plesset MS, Helfferich F, Franklin JN, J. Chem. Phys., 29, 1064 (1958)