화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.24, No.10, 509-514, October, 2014
Capillary Assembly of Silicon Nanowires Using the Removable Topographical Patterns
E-mail:
We demonstrate a simple and effective method to accurately position silicon nanowires (Si NWs) at desirable locations using drop-casting of Si NW inks; this process is suitable for applications in nanoelectronics or nanophotonics. Si NWs were assembled into a lithographically patterned sacrificial photoresist (PR) template by means of capillary interactions at the solution interface. In this process, we varied the type of solvent of the SiNW-containing solution to investigate different assembly behaviors of Si NWs in different solvents. It was found that the assembly of Si NWs was strongly dependent on the surface energy of the solvents, which leads to different evaporation modes of the Si NW solution. After Si NW assembly, the PR template was cleanly removed by thermal decomposition or chemical dissolution and the Si NWs were transferred onto the underlying substrate, preserving its position without any damage. This method enables the precise control necessary to produce highly integrated NW assemblies on all length scales since assembly template is easily fabricated with top-down lithography and removed in a simple process after bottom-up drop-casting of NWs.
  1. Chung SW, Yu JU, Health JR, Appl. Phys. Lett., 76, 2068 (2000)
  2. Cui Y, Lieber CM, Science, 291(5505), 851 (2001)
  3. Zheng GF, Lu W, Jin S, Lieber CM, Adv. Mater., 16(21), 1890 (2004)
  4. Tsakalakos T, Balch J, Fronheiser J, Korevaar B, Sulima O, Rand J, Appl. Phys. Lett., 91, 233117 (2007)
  5. Lee Y, Kakushima K, Shiraishi K, Natori K, Iwai H, J. Appl. Phys., 107, 113705 (2010)
  6. Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE, Appl. Phys. Lett., 77, 1399 (2000)
  7. Tanase M, Bauer LA, Hultgren A, Silevitch DM, Sun L, Reich DH, Searson PC, Meyer GJ, Nano Lett., 1, 155 (2001)
  8. Messer B, Song JH, Yang P, Am J, Chem. Soc., 122, 10232 (2000)
  9. Huang J, Fan R, Connor S, Yang P, Angew.Chem.Int. Edit., 46(14), 2414 (2007)
  10. Petsi AJ, Kalarakis AN, Burganos VN, Chem. Eng. Sci., 65(10), 2978 (2010)
  11. Yang P, Kim F, ChemphysChem, 3(6), 503 (2002)
  12. Kim F, Kwan S, Akana J, Yang PD, J. Am. Chem. Soc., 123(18), 4360 (2001)
  13. Tao AR, Huang J, Yang P, Accounts Chem. Res., 41(12), 1662 (2008)
  14. Whang D, Jin S, Wu Y, Lieber CM, Nano Lett., 3(9), 1255 (2003)
  15. Kim YK, Park SJ, Koo JP, Oh DJ, Kim GT, Hong S, Ha JS, Nanotechnology, 17(5), 1375 (2006)
  16. Fan Z, Ho JC, Jacobson ZA, Yerushalmi R, Alley RL, Razavi H, Javey A, Nano Lett., 8(1), 20 (2008)
  17. Lee M, Im J, Lee BY, Myung S, Kang J, Huang L, Kwon YK, Hong S, Nat. Nanotechnol., 1(1), 66 (2006)
  18. Oh SJ, Cheng Y, Zhang J, Shimoda H, Zhou O, Appl. Phys. Lett., 82(15), 2521 (2003)
  19. Heo K, Cho E, Yang JE, Kim MH, Lee M, Lee BY, Kwon SG, Lee MS, Jo MH, Choi HJ, Hyeon T, Hong S, Nano Lett., 8(12), 4523 (2008)
  20. Lee S, Koo JH, Seo J, Kim SD, Lee KH, Im S, Kim YW, Lee T, J. Nanopart. Res., 14, 840 (2012)
  21. Erbil HY, McHale G, Newton MI, Langmuir, 18(7), 2636 (2002)
  22. Sharma R, Lee CY, Choi JH, Chen K, Strano MS, Nano Lett., 7(9), 2693 (2007)
  23. Salaha W, Zussman E, Phys. Fluids, 17(6), 1 (2005)