화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.24, No.10, 565-571, October, 2014
염료감응형 태양전지의 저비용 상대전극을 위한 N-doped ZnO 나노입자-탄소나노섬유 복합체
N-Doped ZnO Nanoparticle-Carbon Nanofiber Composites for Use as Low-Cost Counter Electrode in Dye-Sensitized Solar Cells
E-mail:
Nitrogen-doped ZnO nanoparticle-carbon nanofiber composites were prepared using electrospinning. As the relative amounts of N-doped ZnO nanoparticles in the composites were controlled to levels of 3.4, 9.6, and 13.8 wt%, the morphological, structural, and chemical properties of the composites were characterized by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the carbon nanofiber composites containing 13.8 wt% N-doped ZnO nanoparticles exhibited superior catalytic properties, making them suitable for use as counter electrodes in dye-sensitized solar cells (DSSCs). This result can be attributed to the enhanced surface roughness of the composites, which offers sites for I3- ion reductions and the formation of Zn3N2 phases that facilitate electron transfer. Therefore, DSSCs fabricated with 13.8 wt% N-doped ZnO nanoparticle-carbon nanofiber composites showed high current denisty (16.3 mA/cm2), high fill factor (57.8%), and excellent power-conversion efficiency (6.69%); at the same time, these DSSCs displayed power-conversion efficiency almost identical to that of DSSCs fabricated with a pure Pt counter electrode (6.57%).
  1. Park NG, J. Korean Ind. Eng. Chem., 15(3), 265 (2004)
  2. Bessho T, Zakeeruddin SM, Yeh CY, Diau EG, Angew. Chem. Int. Ed., 49, 6646 (2010)
  3. Maiaugree W, Pimanpang S, Towannang M, Saekow S, Jarernhoo W, Amornkitbarmarung V, J. Non-Cryst. Solids, 358, 2489 (2012)
  4. Kim MH, Lee H, Jeoung YK, J. Kor. Powd. Met. Inst., 17, 449 (2010)
  5. Han Y, Hwang S, Kang M, Kim Y, Kim H, Kim S, Bae H, Chol H, Jeon M, Adv. Mater., 17, 813 (2005)
  6. Lin JY, Liao JH, Wei TC, Electrochem. Solid State Lett., 14(4), D41 (2011)
  7. Lan JL, Wang JH, Liao, Wei TC, Curr. Appl. Phys., 10, S168 (2010)
  8. Yun S, Wang L, Guo W, Ma T,, Electrochem. Commum., 24, 69 (2012)
  9. Li GR, Wang F, Jiang QW, Gao XP, Shen PW, Angew. Chem. Int. Ed., 49, 3653 (2010)
  10. Joshi P, Xie Y, Ropp M, Galipeau, B, Qiao Q, Energy Environ. Sci., 2, 426 (2009)
  11. Yoo SH, Walsh A, Scanlon DO, Soon A, RSC Adv., 4, 3306 (2014)
  12. Zhang B, Li M, Wang Z, Shi LQ,, Chin. Phys. Lett, 30, 027303 (2013)
  13. An HR, An HL, Kim WB, Ahn HJ, Electrochem. Solid-State Lett, 3, M33 (2014)
  14. Yang B, Feng P, Kumar A, Katiyar RS, Achermann M, J. Phys. D: Appl. Phys., 42, 195402 (2009)
  15. Ameen S, Akhtar MS, Kim YS, Yang OB, Chen HS, J. Phys. Chem. C, 114, 4760 (2010)
  16. Chen LC, Lee KJ, Chen JH, Pan TC, Huang CM, Electrochim. Acta, 112, 698 (2013)
  17. Chen JZ, Li B, Zheng JF, Zhao JH, Jing HW, Zhu ZP, Electrochim. Acta, 56(12), 4624 (2011)
  18. Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J, Murata K, Sol. Energy Mater. Sol. Cells, 79(4), 459 (2003)
  19. Gratzel M, J. Photochem. Photobiol. C, 4, 145 (2003)