- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.24, No.10, 565-571, October, 2014
염료감응형 태양전지의 저비용 상대전극을 위한 N-doped ZnO 나노입자-탄소나노섬유 복합체
N-Doped ZnO Nanoparticle-Carbon Nanofiber Composites for Use as Low-Cost Counter Electrode in Dye-Sensitized Solar Cells
E-mail:
Nitrogen-doped ZnO nanoparticle-carbon nanofiber composites were prepared using electrospinning. As the relative amounts of N-doped ZnO nanoparticles in the composites were controlled to levels of 3.4, 9.6, and 13.8 wt%, the morphological, structural, and chemical properties of the composites were characterized by means of field-emission scanning
electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the carbon nanofiber composites containing 13.8 wt% N-doped ZnO nanoparticles exhibited superior catalytic properties, making them suitable for use as counter electrodes in dye-sensitized solar cells (DSSCs). This result
can be attributed to the enhanced surface roughness of the composites, which offers sites for I3- ion reductions and the formation of Zn3N2 phases that facilitate electron transfer. Therefore, DSSCs fabricated with 13.8 wt% N-doped ZnO nanoparticle-carbon nanofiber composites showed high current denisty (16.3 mA/cm2), high fill factor (57.8%), and excellent power-conversion
efficiency (6.69%); at the same time, these DSSCs displayed power-conversion efficiency almost identical to that of DSSCs fabricated with a pure Pt counter electrode (6.57%).
Keywords:dye-sensitized solar cells;counter electrode;N-doped ZnO nanoparticle-carbon nanofibers;catalytic properties;electrospinning
- Park NG, J. Korean Ind. Eng. Chem., 15(3), 265 (2004)
- Bessho T, Zakeeruddin SM, Yeh CY, Diau EG, Angew. Chem. Int. Ed., 49, 6646 (2010)
- Maiaugree W, Pimanpang S, Towannang M, Saekow S, Jarernhoo W, Amornkitbarmarung V, J. Non-Cryst. Solids, 358, 2489 (2012)
- Kim MH, Lee H, Jeoung YK, J. Kor. Powd. Met. Inst., 17, 449 (2010)
- Han Y, Hwang S, Kang M, Kim Y, Kim H, Kim S, Bae H, Chol H, Jeon M, Adv. Mater., 17, 813 (2005)
- Lin JY, Liao JH, Wei TC, Electrochem. Solid State Lett., 14(4), D41 (2011)
- Lan JL, Wang JH, Liao, Wei TC, Curr. Appl. Phys., 10, S168 (2010)
- Yun S, Wang L, Guo W, Ma T,, Electrochem. Commum., 24, 69 (2012)
- Li GR, Wang F, Jiang QW, Gao XP, Shen PW, Angew. Chem. Int. Ed., 49, 3653 (2010)
- Joshi P, Xie Y, Ropp M, Galipeau, B, Qiao Q, Energy Environ. Sci., 2, 426 (2009)
- Yoo SH, Walsh A, Scanlon DO, Soon A, RSC Adv., 4, 3306 (2014)
- Zhang B, Li M, Wang Z, Shi LQ,, Chin. Phys. Lett, 30, 027303 (2013)
- An HR, An HL, Kim WB, Ahn HJ, Electrochem. Solid-State Lett, 3, M33 (2014)
- Yang B, Feng P, Kumar A, Katiyar RS, Achermann M, J. Phys. D: Appl. Phys., 42, 195402 (2009)
- Ameen S, Akhtar MS, Kim YS, Yang OB, Chen HS, J. Phys. Chem. C, 114, 4760 (2010)
- Chen LC, Lee KJ, Chen JH, Pan TC, Huang CM, Electrochim. Acta, 112, 698 (2013)
- Chen JZ, Li B, Zheng JF, Zhao JH, Jing HW, Zhu ZP, Electrochim. Acta, 56(12), 4624 (2011)
- Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J, Murata K, Sol. Energy Mater. Sol. Cells, 79(4), 459 (2003)
- Gratzel M, J. Photochem. Photobiol. C, 4, 145 (2003)