화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.24, No.5, 249-254, May, 2014
자전연소 합성법을 이용한 W-B 화합물 합성 및 조건 변수의 영향
Synthesis of Tungsten Boride using SHS(Self-propagating High-temperature Synthesis) and Effect of Its Parameters
E-mail:
Due to their unique properties, tungsten borides are good candidates for the industrial applications where certain features such as high hardness, chemical inertness, resistance to high temperatures, thermal shock and corrosion. In this study, conditions were investigated for producing tungsten boride powder from tungsten oxide(WO3) by self-propagating hightemperature synthesis (SHS) followed by HCl leaching techniques. In the first stage of the study, the exothermicity of the WO3-Mg reaction was investigated by computer simulation. Based on the simulation experimental study was conducted and the SHS products consisting of borides and other compounds were obtained starting with different initial molar ratios of WO3, Mg and B2O3. It was found that WO3, Mg and B2O3 reaction system produced high combustion temperature and radical reaction so that diffusion between W and B was not properly occurred. Addition of NaCl and replacement of B2O3 with B successfully solved the diffusion problem. From the optimum condition tungsten boride(W2B and WB) powders which has 0.1~0.9 um particle size were synthesized.
  1. Itoh H, Matsudaira T, Naka S, Hamamoto H, Obayashi M, J. Mater. Sci.: Mater. Electron, 22, 2811 (1987)
  2. Khor KA, Yu LG, Sundararajan G, Thin Solid Films, 478(1-2), 232 (2005)
  3. Stadler S, Winarski RP, MacLaren JM, Ederer DL, vanEk J, Moewes A, Crush MM, Callcott TA, Perera RCC, J. Electron Spectrosc. Relat. Phenom., 110, 75 (2000)
  4. Camurlu HE, Maglia F, J. Eur. Ceram. Soc., 29, 1501 (2009)
  5. Kushkhov KHB, Malyshev VV, Tishchenko AA, Shapoval VI, Powder. Metall. Met. Ceram., 32(1), 7 (1993)
  6. Usta M, Ozbek I, Ipek M, Bindal C, Ucisik AH, Surf. Sci. Rep., 194, 330 (2005)
  7. Yukhvid VI, Pure Appl. Chem., 64(7), 977 (1992)
  8. Yazici S, Derin B, Int. J. Refract. Met. Hard Mater., 29, 90 (2011)
  9. Yazici S, Derin B, J. Adv. Sci. Tech., 63, 246 (2010)
  10. Borovinskaya IP, Pure Appl. Chem., 64(7), 919 (1992)
  11. Demircan U, Derin B, Yucel O, Mater. Res. Bull., 42(2), 312 (2007)
  12. Derin B, Demircan U, Yucel O, Met. Mater. Int., 15(2), 331 (2009)
  13. Nersisyan HH, Won HI, Won CW, Mater. Lett., 59, 3950 (2005)
  14. Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA, J. Am. Ceram. Soc., 90(5), 1347 (2007)
  15. Chamberlain AL, Fahrenholtz WG, Hilmas GE, Ellerby DT, J. Am. Ceram. Soc., 87(6), 1170 (2004)
  16. Murata Y, U.S. Patent, 3, 487 (1970)
  17. Kida O, Japanese Patent JP 2000335969 May 12 (2000)
  18. Kaji N, Shikano H, Tanaka I, Taikabutsu Overseas, 14(2), 39 (1992)
  19. Stucker B, Bradley W, Eubank PT, Norasetthekul S, Bozkurt B, Solid Freeform Fabric. Symp.Proc., 1, 257 (1997)
  20. Jin ZJ, Zhang M, Guo DM, Kang RK, Key Eng. Mater., 291, 537 (2005)
  21. Sung J, Goedde DM, Girolami GS, Abelson JR, J. Appl. Phys., 91(6), 3904 (2002)
  22. Opeka MM, Talmy IG, Zaykoski JA, J. Mater. Sci., 39(19), 5887 (2004)
  23. Van Wie DM, Drewry DG, King DE, Hudson CM, J. Mater. Sci., 39(19), 5915 (2004)
  24. White ME, Price WR, J. Hopkins APL Tech. Digest., 20(3), 415 (1999)
  25. Jackson TA, Eklund DR, Fink AJ, J. Mater. Sci., 39(19), 5905 (2004)
  26. OdaWara O, Ceram., 24(6), 509 (1989)
  27. Crider JF, Ceram. Eng. Sci. Pro., 3, 519 (1982)