화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.24, No.1, 19-24, January, 2014
수열합성법으로 합성된 산화구리 나노막대의 일산화질소 가스 감지 특성
Nitrogen Monoxide Gas Sensing Properties of CuO Nanorods Synthesized by a Hydrothermal Method
E-mail:
We report the nitrogen monoxide (NO) gas sensing properties of p-type CuO-nanorod-based gas sensors. We synthesized the p-type CuO nanorods with breadth of about 30 nm and length of about 330 nm by a hydrothermal method using an as-deposited CuO seed layer prepared on a Si/SiO2 substrate by the sputtering method. We fabricated polycrystalline CuO nanorod arrays at 80 oC under the hydrothermal condition of 1:1 morality ratio between copper nitrate trihydrate [Cu(NO2)2·3H2O] and hexamethylenetetramine (C6H12N4). Structural characterizations revealed that we prepared the pure CuO nanorod array of a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the gas sensing measurements that the p-type CuO nanorod gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as 200 oC. We also found that these CuO nanorod gas sensors showed reversible and reliable electrical response to NO gas at a range of operating temperatures. These results would indicate some potential applications of the p-type semiconductor CuO nanorods as promising sensing materials for gas sensors, including various types of p-n junction gas sensors.
  1. Yamazoe N, Miura N, Sens. Actuators B, 20(2-3), 95 (1994)
  2. Sauter D, Weimar U, Noezel G, Mitrovics J, Gopel W, Sens. Actuators B, 69(1-2), 1 (2000)
  3. Min Y, Tuller HL, Palzer S, Wollenstein J, Bottner H, Sens. Actuators B, 93(1-3), 435 (2003)
  4. Gao T, Wang TH, Appl. Phys. A, 80, 1451 (2005)
  5. Xu J, Pan Q, Shun Y, Tian Z, Sens. Actuators B, 66, 277 (2000)
  6. Fan Z, Lu JG, J. Nanosci. Nanotech., 5, 1561 (2005)
  7. Dikovska AO, Sens. Actuators A, 140, 19 (2007)
  8. Park SM, Zhang SL, Huh JS, Korean J. Mater. Res., 18(7), 367 (2008)
  9. Li M, Schnablegger H, Mann S, Nature, 402, 393 (1999)
  10. Parzke GR, Krumeich F, Nesper R, Angew. Chem. Int. Ed., 41, 2446 (2002)
  11. Chang Y, Zeng HC, Crystal Growth Des., 4, 397 (2004)
  12. Yao WT, Yu SH, Zhou Y, Jiang J, Wu QS, Zhang L, Jiang J, J. Phys. Chem. B, 109(29), 14011 (2005)
  13. Wen XG, Xie YT, Choi CL, Wan KC, Li XY, Yang SH, Langmuir, 21(10), 4729 (2005)
  14. Gao F, Pang H, Xu SP, Lu QY, Chem. Commun., 3571 (2009)
  15. Shrestha KM, Serensen CM, Klabunde KJ, J. Phys. Chem. C, 114(34), 14368 (2010)
  16. Yang C, Su X, Xiao F, Jian J, Wang J, Sens. Actuators B, 158(1), 299 (2011)
  17. Naisbitt SC, Pratt KFE, Williams DE, Parkin IP, Sens. Actuators B, 114(2), 969 (2006)
  18. Solis JL, Lantto V, Sens. Actuators B, 48(1-3), 322 (1998)
  19. Scott RWJ, Yang SM, Chabanis G, Coombs N, Williams DE, Ozin GA, Adv. Mater., 13(19), 1468 (2001)
  20. Ahlers S, Muller G, Doll Th, Encyclopedia of Sensors, p. 413, ed. by C. A. Grimes, E. C. Dickey and M. V. Pishko, American Scientific Publishers (2006). (2006)