Korean Journal of Materials Research, Vol.24, No.1, 37-42, January, 2014
Electrochemical capacitor를 위한 Ru 나노입자가 담지 된 다공성 탄소 나노섬유의 제조
Fabrication of Ru Nanoparticles Decorated Porous Carbon Nanofibers for Electrochemical Capacitors
E-mail:
Well-distributed ruthenium (Ru) nanoparticles decorated on porous carbon nanofibers (CNFs) were synthesized using an electrospinning method and a reduction method for use in high-performance elctrochemical capacitors. The formation mechanisms including structural, morphological, and chemical bonding properties are demonstrated by means of field emission
scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). To investigate the optimum amount of the Ru nanoparticles decorated on the porous CNFs, we controlled three different weight ratios (0 wt%, 20 wt%, and 40 wt%) of the Ru nanoparticles on the porous CNFs. For the case of 20 wt% Ru nanoparticles decorated on the porous CNFs, TEM results indicate that the Ru nanoparticles with ~2-4 nm size are uniformly distributed on the porous CNFs. In addition, 40 wt% Ru nanoparticles decorated on the porous CNFs exhibit agglomerated Ru nanoparticles, which causes low performance of electrodes in electrochemical capacitors. Thus, proper
distribution of 20 wt% Ru nanoparticles decorated on the porous CNFs presents superior specific capacitance (~280.5 F/g at 10 mV/s) as compared to the 40 wt% Ru nanoparticles decorated on the porous CNFs and the only porous CNFs. This enhancement can be attributed to the synergistic effects of well-distributed Ru nanoparticles and porous CNF supports having high surface area.
Keywords:electrochemical capacitors;porous carbon nanofibers;ruthenium(Ru) nanoparticles;electrospinning;reduction method
- Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS, Int. J. Hydrog. Energy, 34(11), 4889 (2009)
- Kotz R, Carlen M, Electrochim. Acta, 45(15-16), 2483 (2000)
- Ahn HJ, Seong TY, J. Alloys Comp., 478, L8 (2009)
- Mitani S, Lee SI, Saito K, Korai Y, Mochida I, Electrochim. Acta, 51(25), 5487 (2006)
- Lewandowski A, Jakobczyk P, Galinski M, Electrochim. Acta, 86, 225 (2012)
- Ahn HJ, Sohn JI, Kim YS, Shim HS, Kim WB, Seon TY, Electrochem. Commun., 8, 513 (2006)
- Youn DY, Tuller HL, Hyun TS, Choi DK, Kim ID, J. Electrochem. Soc., 158(8), A970 (2011)
- Zheng JP, Cygan PJ, Jow TR, J. Electrochem. Soc., 142(8), 2699 (1995)
- An GH, Ahn HJ, ECS Solid State Lett., 2, M33 (2013)
- Chuang CM, Huang CW, Teng H, Ting JM, Compos. Sci. Technol., 72, 1524 (2012)
- Lv P, Zhang P, Feng YY, Li Y, Feng W, Electrochim. Acta, 78, 515 (2012)
- Nataraj SK, Yang KS, Aminabhavi TM, Prog. Polym. Sci., 37, 487 (2012)
- Lee BS, Son SB, Park KM, Lee G, Oh KH, Lee SH, Yu WR, ACS Appl. Mater. Interfaces, 4, 6702 (2012)
- Ahn HJ, Moon WJ, Seong TY, Wang D, Electrochem. Commun., 11, 635 (2009)
- Marwan J, Addou T, Belanger D, Chem. Mater., 17, 2395 (2005)
- Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR, J. Am. Chem. Soc., 126(25), 8028 (2004)
- Shukla AK, Banerjee A, Ravikumar MK, Jalajakshi A, Electrochim. Acta, 84, 165 (2012)
- Vellacheri R, Pillai VK, Kurungot S, Nanoscale, 4, 890 (2012)
- Perret P, Khani Z, Brousse T, Belanger D, Guay D, Electrochim. Acta, 56(24), 8122 (2011)