화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.24, No.1, 37-42, January, 2014
Electrochemical capacitor를 위한 Ru 나노입자가 담지 된 다공성 탄소 나노섬유의 제조
Fabrication of Ru Nanoparticles Decorated Porous Carbon Nanofibers for Electrochemical Capacitors
E-mail:
Well-distributed ruthenium (Ru) nanoparticles decorated on porous carbon nanofibers (CNFs) were synthesized using an electrospinning method and a reduction method for use in high-performance elctrochemical capacitors. The formation mechanisms including structural, morphological, and chemical bonding properties are demonstrated by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). To investigate the optimum amount of the Ru nanoparticles decorated on the porous CNFs, we controlled three different weight ratios (0 wt%, 20 wt%, and 40 wt%) of the Ru nanoparticles on the porous CNFs. For the case of 20 wt% Ru nanoparticles decorated on the porous CNFs, TEM results indicate that the Ru nanoparticles with ~2-4 nm size are uniformly distributed on the porous CNFs. In addition, 40 wt% Ru nanoparticles decorated on the porous CNFs exhibit agglomerated Ru nanoparticles, which causes low performance of electrodes in electrochemical capacitors. Thus, proper distribution of 20 wt% Ru nanoparticles decorated on the porous CNFs presents superior specific capacitance (~280.5 F/g at 10 mV/s) as compared to the 40 wt% Ru nanoparticles decorated on the porous CNFs and the only porous CNFs. This enhancement can be attributed to the synergistic effects of well-distributed Ru nanoparticles and porous CNF supports having high surface area.
  1. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS, Int. J. Hydrog. Energy, 34(11), 4889 (2009)
  2. Kotz R, Carlen M, Electrochim. Acta, 45(15-16), 2483 (2000)
  3. Ahn HJ, Seong TY, J. Alloys Comp., 478, L8 (2009)
  4. Mitani S, Lee SI, Saito K, Korai Y, Mochida I, Electrochim. Acta, 51(25), 5487 (2006)
  5. Lewandowski A, Jakobczyk P, Galinski M, Electrochim. Acta, 86, 225 (2012)
  6. Ahn HJ, Sohn JI, Kim YS, Shim HS, Kim WB, Seon TY, Electrochem. Commun., 8, 513 (2006)
  7. Youn DY, Tuller HL, Hyun TS, Choi DK, Kim ID, J. Electrochem. Soc., 158(8), A970 (2011)
  8. Zheng JP, Cygan PJ, Jow TR, J. Electrochem. Soc., 142(8), 2699 (1995)
  9. An GH, Ahn HJ, ECS Solid State Lett., 2, M33 (2013)
  10. Chuang CM, Huang CW, Teng H, Ting JM, Compos. Sci. Technol., 72, 1524 (2012)
  11. Lv P, Zhang P, Feng YY, Li Y, Feng W, Electrochim. Acta, 78, 515 (2012)
  12. Nataraj SK, Yang KS, Aminabhavi TM, Prog. Polym. Sci., 37, 487 (2012)
  13. Lee BS, Son SB, Park KM, Lee G, Oh KH, Lee SH, Yu WR, ACS Appl. Mater. Interfaces, 4, 6702 (2012)
  14. Ahn HJ, Moon WJ, Seong TY, Wang D, Electrochem. Commun., 11, 635 (2009)
  15. Marwan J, Addou T, Belanger D, Chem. Mater., 17, 2395 (2005)
  16. Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR, J. Am. Chem. Soc., 126(25), 8028 (2004)
  17. Shukla AK, Banerjee A, Ravikumar MK, Jalajakshi A, Electrochim. Acta, 84, 165 (2012)
  18. Vellacheri R, Pillai VK, Kurungot S, Nanoscale, 4, 890 (2012)
  19. Perret P, Khani Z, Brousse T, Belanger D, Guay D, Electrochim. Acta, 56(24), 8122 (2011)