Korean Journal of Chemical Engineering, Vol.32, No.1, 104-112, January, 2015
Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides
E-mail:
Mg-Al-Ti layered double hydroxides (LDH), consisting of di-, tri- and tetra-valent cations with different Al3+/Ti4+ ratio, have been synthesized by co-precipitation which was demonstrated as efficient visible-light photocatalysts. The structure and chemical composition of the compound were characterized by PXRD, FT-IR, SAA, N2 adsorption-desorption isotherms, and DSC techniques. It is found that no hydrotalcites structure were formed for Ti4+/(Ti4++ Al3+)>0.5 and the substitution of Ti(IV) for Al(III) in the layer increases the thermal stability of the resulting LDH
materials. The calcined sample containing titanium showed relatively high adsorption capacity for MB as compared to that without titanium. Results show that the pseudo-second-order kinetic model and the Langmuir were found to correlate the experimental data well. The photocatalytic activity was evaluated for the degradation of the methylene blue. The photocatalytic activity increased with the increase of the Al/Ti cationic ratio. 71% of the dye could be removed by
the Mg/Al/Ti-LDH with the cationic ratio Al/Ti=0 : 1 and calcined at 500 ℃.
- Vandevivere PC, Bianchi R, Verstraete W, J. Chem. Technol. Biotechnol., 72(4), 289 (1998)
- Zollinger H, Color Chemistry, VCH, Weinheim, 2nd Ed. (1991)
- Joon-Yeob L, Wan-Kuen J, Environ. Eng. Res., 17(4), 179 (2012)
- Kumaresan L, Palanisamy B, Palanichamy M, Murugesan V, Environ. Eng. Res., 16(2), 81 (2011)
- Das N, Samal A, Micropor. Mesopor. Mater., 72, 219 (2004)
- Allmann R, Acta Crystallogr. Sect. B, 24, 972 (1986)
- Miyata S, Clays Clay Miner., 23, 369 (1975)
- Taylor HFW, Miner. Mag., 39, 377 (1973)
- Valcheva-Traykova M, Davidova V, Weiss A, J. Mater. Sci., 28, 2157 (1983)
- Cavani F, Trifiro F, Vaccari A, Catal. Today, 11, 173 (1991)
- Kooli F, Kosuge K, Tsunashima A, J. Mater. Sci., 30(18), 4591 (1995)
- Kooli F, Kosuge K, Tsunashima A, J. Solid State Chem., 118, 4591 (1995)
- Fernandez JM, Barriga C, Ulibarri MA, Labajos FM, Rives V, Chem. Mater., 9, 312 (1997)
- Saber O, Tagaya H, J. Incl. Phenom. Macrocyclic Chem., 45, 109 (2003)
- Reichle WT, J. Catal., 94, 547 (1985)
- Saber O, Tagaya H, J. Inclusion Phenom., 45, 17 (2003)
- Leroux F, Adachi-Pagano M, Intissar M, ChauvieAre S, Forano C, Besse JP, J. Mater. Chem., 11, 105 (2001)
- Busetto C, Del Piero G, Manara G, J. Catal., 85, 260 (1984)
- Zhang WH, Guo XD, He J, Qian ZY, J. Eur. Ceram. Soc., 28, 1623 (2008)
- Shu X, Zhang W, He J, Gao F, Zhu Y, Solid State Sci., 8, 634 (2006)
- Crepaldi EL, Trondo J, Ardoso LP, Valim JB, J. Colloid Surf. A: Physicochem. Eng. Aspects, 211, 103 (2002)
- You Y, Zhao H, Vance GF, J. Appl. Clay Sci., 21, 217 (2002)
- Reichle WT, Solid State Ionics, 22, 713 (1986)
- Ehlsissen KT, Delahaye-Vidal A, Genin P, Figlarz M, Willmann P, J. Mater. Chem., 3, 883 (1993)
- Das N, Sandal A, Micropor. Mesopor. Mater., 72, 219 (2004)
- Hernandez-Moreno MJ, Ulibarri MA, Rendon JL, Serna C, J. Phys. Chem. Miner., 12, 34 (1985)
- Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti R, Rouquerol J, Sieminiewska T, Pure Appl. Chem., 57, 603 (1985)
- Reichle WT, Kang SY, Everhardt DS, J. Catal., 101, 352 (1986)
- Tichit D, Das N, Coq B, Durand R, Chem. Mater., 14, 1530 (2002)
- Saber O, Tagaya H, Mater. Chem. Phys., 108(2-3), 449 (2008)
- Kannan N, Indian J. Environ. Protec., 11(7), 514 (1991)
- Lagergren S, Handlingar, 24(4), 139 (1898)
- Ho LC, Rudnick G, Rix HW, Shields JC, Daniel H, McIntosh DH, Filippenko AV, Sargent WLW, Eracleous M, Astrophysical. Journal, 541, 120 (2000)
- Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
- Langmuir I, Chem. Soc., 40, 1361 (1918)
- Freundlich HMF, Phys. Chem., 57, 385 (1906)
- Barka N, Assabbane A, Nounah A, Albourine A, Ait-Ichou Y, Sciences Technologie, B27, 09 (2008)
- Fu HB, Pan CS, Yao WQ, Zhu YF, J. Phys. Chem., 109, 22432 (2005)