화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.23, No.10, 562-567, October, 2013
Improvement of Hydrogen Storage Properties of Mg by Addition of NbF5 via Mechanical Milling under H2
E-mail:
A 90 wt% Mg-10 wt% NbF5 sample was prepared by mechanical milling under H2 (reactive mechanical grinding). Its hydriding and dehydriding properties were then examined. Activation of the 90 wt% Mg-10 wt% NbF5 sample was not required. At n = 1, the sample absorbed 3.11 wt% H for 2.5 min, 3.55 wt% H for 5 min, 3.86 wt% H for 10 min, and 4.23 wt% H for 30 min at 593K under 12 bar H2. At n = 1, the sample desorbed 0.17 wt% H for 5 min, 0.74 wt% H for 10 min, 2.03 wt% H for 30 min, and 2.81 wt% H for 60 min at 593K under 1.0 bar H2. The XRD pattern of the 90 wt% Mg-10 wt% NbF5 after reactive mechanical grinding showed Mg, β-MgH2 and small amounts of γ-MgH2, NbH2, MgF2 and NbF3. The XRD pattern of the 90 wt% Mg-10 wt% NbF5 dehydrided at n = 3 revealed Mg, β-MgH2, a small amount of MgO and very small amounts of MgF2 and NbH2. The 90 wt% Mg-10 wt% NbF5 had a higher initial hydriding rate and a larger quantity of hydrogen absorbed for 60 min than the 90 wt% Mg-10 wt% MnO and the 90 wt% Mg-10 wt% Fe2O3, which were reported to have quite high hydriding rates and/or dehydriding rates. The 90 wt% Mg-10 wt% NbF5 had a higher initial dehydriding rate (after an incubation period) and a larger quantity of hydrogen desorbed for 60 min than the 90 wt% Mg-10 wt% MnO and the 90 wt% Mg-10 wt% Fe2O3.
  1. Kwak YJ, Park HR, Song MY, Kor. J. Met. Mater., 50(11), 855 (2012)
  2. Hong SH, Kwon SN, Song MY, Kor, J. Met. Mater., 49(4), 298 (2011)
  3. Kim KI, Hong TW, Kor. J. Met. Mater., 49(3), 264 (2011)
  4. Reilly JJ, Wiswall RH, Inorg. Chem., 6(12), 2220 (1967)
  5. Reilly JJ, Wiswall Jr RH, Inorg. Chem., 7(11), 2254 (1968)
  6. Akiba E, Nomura K, Ono S, Suda S, Int. J. Hydrogen Energy, 7(10), 787 (1982)
  7. Li ZN, Liu XP, Jiang LJ, Wang SM, Int. J. Hydrog. Energy, 32(12), 1869 (2007)
  8. Boulet JM, Gerard N, J. Less-Common Met., 89, 151 (1983)
  9. Lucaci M, Biris AR, Orban RL, Sbarcea GB, Tsakiris V, J. Alloys Compd., 488(1), 163 (2009)
  10. Li Z, Liu X, Huang Z, Jiang L, Wang S, Rare Metals, (Supplement 1), 25(6), 247 (2006)
  11. Aminorroaya S, Ranjbar A, Cho YH, Liu HK, Dahle AK, Int. J. Hydrog. Energy, 36(1), 571 (2011)
  12. Cho YH, Aminorroaya S, Liu HK, Dahle AK, Int. J. Hydrog. Energy, 36(8), 4984 (2011)
  13. Milanese C, Girella A, Bruni G, Cofrancesco P, Berbenni V, Matteazzi P, Marini A, Intermetallics, 18(2), 203 (2010)
  14. Tanguy B, Soubeyroux JL, Pezat M, Portier J, Hagenmuller P, Mater. Res. Bull., 11, 1441 (1976)
  15. Eisenberg FG, Zagnoli DA, Sheridan III JJ, J. Less-Common Met., 74, 323 (1980)
  16. Yavari AR, LeMoulec A, de Castro FR, Deledda S, Friedrichs O, Botta WJ, Vaughan G, Klassen T, Fernandez A, Kvick A, Scripta Materialia, 52(8), 719 (2005)
  17. Jin SA, Shim JH, Cho YW, Yi KW, J. Power Sources, 172(2), 859 (2007)
  18. Malka IE, Czujko T, Bystrzycki J, Int. J. Hydrog. Energy, 35(4), 1706 (2010)
  19. Malka IE, Blachowski A, Ruebenbauer K, Przewoznik J, Zukrowski J, Czujko T, Bystrzycki J, J. Alloys Compd., 509, 5368 (2011)
  20. Song MY, Baek SH, Bobet JL, Hong SH, Int. J. Hydrog. Energy, 35(19), 10366 (2010)
  21. Song MY, Kwon IH, Kwon SN, Park CG, Hong SH, Bae JS, Mumm DR, J. Alloys Compd., 416, 266 (2006)