Korean Journal of Materials Research, Vol.23, No.10, 562-567, October, 2013
Improvement of Hydrogen Storage Properties of Mg by Addition of NbF5 via Mechanical Milling under H2
E-mail:
A 90 wt% Mg-10 wt% NbF5 sample was prepared by mechanical milling under H2 (reactive mechanical grinding). Its hydriding and dehydriding properties were then examined. Activation of the 90 wt% Mg-10 wt% NbF5 sample was not required. At n = 1, the sample absorbed 3.11 wt% H for 2.5 min, 3.55 wt% H for 5 min, 3.86 wt% H for 10 min, and 4.23 wt% H for 30 min at 593K under 12 bar H2. At n = 1, the sample desorbed 0.17 wt% H for 5 min, 0.74 wt% H for 10 min, 2.03 wt%
H for 30 min, and 2.81 wt% H for 60 min at 593K under 1.0 bar H2. The XRD pattern of the 90 wt% Mg-10 wt% NbF5 after reactive mechanical grinding showed Mg, β-MgH2 and small amounts of γ-MgH2, NbH2, MgF2 and NbF3. The XRD pattern of the 90 wt% Mg-10 wt% NbF5 dehydrided at n = 3 revealed Mg, β-MgH2, a small amount of MgO and very small amounts of MgF2 and NbH2. The 90 wt% Mg-10 wt% NbF5 had a higher initial hydriding rate and a larger quantity of hydrogen absorbed for 60 min than the 90 wt% Mg-10 wt% MnO and the 90 wt% Mg-10 wt% Fe2O3, which were reported to have quite high hydriding rates and/or dehydriding rates. The 90 wt% Mg-10 wt% NbF5 had a higher initial dehydriding rate (after an incubation period) and a larger quantity of hydrogen desorbed for 60 min than the 90 wt% Mg-10 wt% MnO and the 90 wt% Mg-10 wt% Fe2O3.
Keywords:hydrogen absorbing materials;reactive mechanical grinding;microstructure;X-ray diffraction pattern;90 wt% Mg-10 wt% NbF5
- Kwak YJ, Park HR, Song MY, Kor. J. Met. Mater., 50(11), 855 (2012)
- Hong SH, Kwon SN, Song MY, Kor, J. Met. Mater., 49(4), 298 (2011)
- Kim KI, Hong TW, Kor. J. Met. Mater., 49(3), 264 (2011)
- Reilly JJ, Wiswall RH, Inorg. Chem., 6(12), 2220 (1967)
- Reilly JJ, Wiswall Jr RH, Inorg. Chem., 7(11), 2254 (1968)
- Akiba E, Nomura K, Ono S, Suda S, Int. J. Hydrogen Energy, 7(10), 787 (1982)
- Li ZN, Liu XP, Jiang LJ, Wang SM, Int. J. Hydrog. Energy, 32(12), 1869 (2007)
- Boulet JM, Gerard N, J. Less-Common Met., 89, 151 (1983)
- Lucaci M, Biris AR, Orban RL, Sbarcea GB, Tsakiris V, J. Alloys Compd., 488(1), 163 (2009)
- Li Z, Liu X, Huang Z, Jiang L, Wang S, Rare Metals, (Supplement 1), 25(6), 247 (2006)
- Aminorroaya S, Ranjbar A, Cho YH, Liu HK, Dahle AK, Int. J. Hydrog. Energy, 36(1), 571 (2011)
- Cho YH, Aminorroaya S, Liu HK, Dahle AK, Int. J. Hydrog. Energy, 36(8), 4984 (2011)
- Milanese C, Girella A, Bruni G, Cofrancesco P, Berbenni V, Matteazzi P, Marini A, Intermetallics, 18(2), 203 (2010)
- Tanguy B, Soubeyroux JL, Pezat M, Portier J, Hagenmuller P, Mater. Res. Bull., 11, 1441 (1976)
- Eisenberg FG, Zagnoli DA, Sheridan III JJ, J. Less-Common Met., 74, 323 (1980)
- Yavari AR, LeMoulec A, de Castro FR, Deledda S, Friedrichs O, Botta WJ, Vaughan G, Klassen T, Fernandez A, Kvick A, Scripta Materialia, 52(8), 719 (2005)
- Jin SA, Shim JH, Cho YW, Yi KW, J. Power Sources, 172(2), 859 (2007)
- Malka IE, Czujko T, Bystrzycki J, Int. J. Hydrog. Energy, 35(4), 1706 (2010)
- Malka IE, Blachowski A, Ruebenbauer K, Przewoznik J, Zukrowski J, Czujko T, Bystrzycki J, J. Alloys Compd., 509, 5368 (2011)
- Song MY, Baek SH, Bobet JL, Hong SH, Int. J. Hydrog. Energy, 35(19), 10366 (2010)
- Song MY, Kwon IH, Kwon SN, Park CG, Hong SH, Bae JS, Mumm DR, J. Alloys Compd., 416, 266 (2006)