화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.23, No.10, 586-591, October, 2013
마이크로 구조 및 동유체력을 이용한 나노와이어 미세 정렬 및 프린팅 기법
Directional Alignment and Printing of One Dimensional Nanomaterials Using the Combination of Microstructure and Hydrodynamic Force
E-mail:
The printing of nanomaterials onto certain substrates is one of the key technologies behind high-speed interconnection and high-performance electronic devices. For the printing of next-generation electronic devices, a printing process which can be applied to a flexible substrate is needed. A printing process on a flexible substrate requires a lowtemperature, non-vacuum process due to the physical properties of the substrate. In this study, we obtained well-ordered Ag nanowires using modified gravure printing techniques. Ag nanowires are synthesized by a silver nitrate (AgNO3) reduction process in an ethylene glycol solution. Ag nanowires were well aligned by hydrodynamic force on a micro-engraved Si substrate. With the three-dimensional structure of polydimethylsiloxane (PDMS), which has an inverse morphology relative to the micro-engraved Si substrate, the sub-micron alignment of Ag nanowires is possible. This technique can solve the performance problems associated with conventional organic materials. Also, given that this technique enables large-area printing, it has great applicability not only as a next-generation printing technology but also in a range of other fields.
  1. Hong S, Myung S, Nat. Nanotechnol., 2(4), 207 (2007)
  2. Lu W, Lieber CM, Nat. Mater., 6(11), 841 (2007)
  3. Xu F, Lu W, Zhu Y, ACS Nano, 5, 672 (2011)
  4. Sun Y, Rogers JA, Nano Lett., 4, 1953 (2004)
  5. McAlpine MC, Ahmad H, Wang DW, Heath JR, Nat. Mater., 6(5), 379 (2007)
  6. Baca AJ, Ahn JH, Sun Y, Meitl MA, Manard E, Kim HS, Choi WM, Kim DH, Huang Y, Rogers JA, Angew. Chem. Int. Ed., 47, 5524 (2008)
  7. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP, Science, 290, 2133 (2000)
  8. Wang JZ, Zheng ZH, Li HW, Huck WTS, Sirringhaus H, Nat. Mater., 3(3), 171 (2004)
  9. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ, Adv. Mater., 15(5), 353 (2003)
  10. Chen JY, Wiley BJ, Xia YN, Langmuir, 23(8), 4120 (2007)
  11. Hu J, Odom TW, Lieber CM, Acc. Chem. Res., 32, 435 (1999)
  12. Pascual JI, Mendez J, Gomezherrero J, Baro AM, Garcia N, Landman U, Luedtke WD, Bogachek EN, Cheng HP, Science, 267(5205), 1793 (1995)
  13. Wu Y, Xiang J, Yang C, Lu W, Lieber CM, Nature, 430, 61 (2004)
  14. Whiney TM, Jiang JS, Searson PC, Chien CL, Science, 261, 1316 (1993)
  15. Wu B, Heidelberg A, Boland JJ, Nat. Mater., 4(7), 525 (2005)
  16. Walter EC, Ng K, Zach MP, Penner RM, Favier F, Microelectron. Eng., 61, 555 (2002)
  17. Murphy CJ, Sau TK, Gole A, Orendorff CJ, MRS Bull., 30, 349 (2005)
  18. Korte KE, Skrabalak SE, Xia Y, J. Mater. Chem., 18, 437 (2008)
  19. Campbell CT, Surf. Sci., 157, 43 (1985)
  20. de Mongeot FB, Cupilillo A, Valbusa V, Rocca M, Chem. Phys. Lett., 270, 345 (1997)
  21. Seo JM, Lee HI, Lee SA, Lee TI, Myoung JM, Lee TY, Small, 8, 1614 (2012)
  22. Picknett RG, Bexon R, J. Colloid Interface Sci., 61, 336 (1977)
  23. Yu HZ, Soolaman DM, Rowe AW, Banks JT, ChemPhysChem., 5, 1035 (2004)