화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.22, No.10, 519-525, October, 2012
유한차분 시간영역 방법을 이용한 Ag 나노링 구조의 산란효과
Finite-Difference Time-Domain Calculation of Light Scattering Efficiency for Ag Nanorings
E-mail:
Enhancement of light trapping in solar cells is becoming increasingly urgent for the development of next generation thin film solar cells. One of the possible candidates for increasing light trapping in thin film solar cells that has emerged recently is the use of scattering from metallic nanostructures. In this study, we have investigated the effects of the geometric parameters of Ag nanorings on the light scattering efficiency by using three dimensional Finite Different Time Domain (FDTD) calculations. We have found that the forward scattering of incident radiation from Ag nanorings strongly depends on the geometric parameters of the nanostructures such as diameter, height, etc. The forward scattering to substrate direction is increased as the outer diameter and height of the nanorings decrease. In particular, for nanorings larger than 200 nm, the inner diameter of Ag nanorings should be optimized to enhance the forward scattering efficiency. Light absorption and scattering efficiency calculations for the various nanoring arrays revealed that the periodicity of nanorings arrays also plays an important role in the absorption and the scattering efficiency enhancement. Light scattering efficiency calculations for nanoring arrays also revealed that enhancement of scattering efficiency could be utilized to enhance the light absorption through the forward scattering mechanism.
  1. Beck FJ, Polman A, Catchpole KR, J. Appl. Phys., 105, 114310 (2009)
  2. Tsakalakos L, Nanotechnology for Photovoltaics, p. 391, CRC Press, FL, USA (2010). (2010)
  3. Atwater HA, Polman A, Nat. Mater., 9(3), 205 (2010)
  4. Lee J, Appl. Chem., 15(1), 49 (2011)
  5. Kim YJ, Cho JS, Lee JC, Wang JS, Song JS, Yoon KH, Korean J. Mater. Res., 19(5), 245 (2009)
  6. Ferry VE, Munday JN, Atwater HA, Adv. Mater., 22(43), 4794 (2010)
  7. Catchpole KR, Polman A, Optic. Express, 16, 21793 (2008)
  8. Schaadt DM, Feng B, Yu ET, Appl. Phys. Lett., 86, 063106 (2005)
  9. Derkacs D, Lim SH, Matheu P, Mar W, Yu ET, Appl. Phys. Lett., 89, 093103 (2006)
  10. Pillai S, Catchpole KR, Trupke T, Green MA, J. Appl. Phys., 101, 093105 (2007)
  11. Westphalen M, Kreibig U, Rostalski J, Luth H, Meissner D, Sol. Energy Mater. Sol. Cells, 61(1), 97 (2000)
  12. Rand BP, Peumans P, Forrest SR, J. Appl. Phys., 96, 7519 (2004)
  13. Morfa AJ, Rowlen KL, Reilly III TH, Romero MJ, Lagemaat JVD, Appl. Phys. Lett., 92, 013504 (2008)
  14. Konda RB, Mundle R, Mustafa H, Bamiduro O, Pradhan AK, Roy UN, Cui Y, Burger A, Appl. Phys. Lett., 91, 191111 (2007)
  15. Hagglund C, Zach M, Kasemo B, Appl. Phys. Lett., 92, 013113 (2008)
  16. Catchpole KR, Polman A, Appl. Phys. Lett., 93, 191113 (2008)
  17. Huang C, Ye J, Wang S, Stakenborg T, Lagae L, Appl. Phys. Lett., 100, 173114 (2012)
  18. Han XF, Wen ZC, Wei HX, J. Appl. Phys., 103, 07E933 (2008)
  19. FDTD solutions (On the web). Retrieved August 1, 2012 from http://www.lumerical.com (2012)