화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.22, No.2, 78-81, February, 2012
Synthesis and Characterization of Y2O3 Powders by a Modified Solvothermal Process
E-mail:
Y2O3 nanomaterials have been widely used in transparent ceramics and luminescent devices. Recently, many studies have focused on controlling the size and morphology of Y2O3 in order to obtain better material performance. Y2O3 powders were prepared under a modified solvothermal condition involving precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at temperatures at 250oC after a 6h process. The properties of the Y2O3 powders were studied as a function of the solvent ratio. The synthesis of Y2O3 crystalline particles is possible under a modified solvothermal condition in a water/ethylene glycol solution. Solvothermal processing condition parameters including the pH, reaction temperature and solvent ratio, have significant effects on the formation, phase component, morphology and particle size of yttria powders. Ethylene glycol is a versatile, widely used, inexpensive, and safe capping organic molecule for uniform nanoparticles besides as a solvent. The characterization of the synthesized Y2O3 powders were studied by XRD, SEM (FE-SEM) and TG/DSC. An X-ray diffraction analysis of the synthesized powders indicated the formation of the Y2O3 cubic structure upon calcination. The average crystalline sizes and distribution of the synthesized Y2O3 powders was less than 2 um and broad, respectively. The synthesized particles were spherical and hexagonal in shape. The morphology of the synthesized powders changed with the water and ethylene glycol ratio. The average size and shape of the synthesized particles could be controlled by adjusting the solvent ratio.
  1. Wilk GD, Wallace RM, Anthony JM, J. Appl. Phys., 89, 5243 (2001)
  2. De Rouffignac P, Park JS, Gordon RG, Chem. Mater., 17, 4808 (2005)
  3. Alford NM, Birchall JD, Clegg WJ, Harmer MA, Kendall K, Jones DH, J. Mater. Sci., 23, 761 (1988)
  4. Kilbourn BT, Encyclopedia of Materials Science and Engineering vol. 7, p. 5509-5510, ed. Bever MB, Pergamon Press Ltd., Oxford, UK (1986). (1986)
  5. Okuda T, Nomura S, Sillkakura S, Asabe K, Tanouf S, Fujiwara M, in Proceedings of the International Conference on Solid State Powder Processing (Indianapolis, USA October 1989), ed. Clauer AH, De Barbadillo JJ (The Minerals, Metals and Materials Society, TMS, USA, 1990) p. 195-202. (1990)
  6. Wang X, Zhuang J, Peng Q, Li Y, Nature, 437(7055), 121 (2005)
  7. Si R, Zhang YW, You JP, Yan CH, Angew. Chem. Int. Ed., 44(21), 3256 (2005)
  8. Xu G, Zhang YW, Liao CS, Yan CH, J. Am. Ceram. Soc., 87(12), 2275 (2004)
  9. Wang X, Sun XM, Yu D, Zou BS, Li Y, Adv. Mater., 15(7), 1442 (2003)
  10. Ronda CR, Justel T, Nikol H, J. Alloy. Comp., 275-277, 669 (1998)
  11. Ikegami T, Li JG, Mori T, Moriyoshi Y, J. Am. Ceram. Soc., 85(7), 1725 (2002)
  12. Kim BN, Hiraga K, Morita K, Sakka Y, Nature, 413, 288 (2001)
  13. Rosenflanz A, Frey M, Endres B, Anderson T, Richards E, Schardt C, Nature, 430, 761 (2004)
  14. Lin TS, Sobotka LG, Froncisz W, Nature, 333, 21 (1988)
  15. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H, Nature, 432, 488 (2004)
  16. Suresh Raj AME, Magdalane CM, Nagaraja KS, Phys. Status Solidi, 191, 230 (2002)
  17. Wang X, Sun XM, Yu DP, Zou BS, Li YD, Adv. Mater., 15(17), 1442 (2003)
  18. Wu XC, Tao YR, Gao F, Dong L, Hu Z, J. Cryst. Growth, 277(1-4), 643 (2005)
  19. Xu Z, Hong Z, Zhao Q, Peng L, Zhang P, J. Rare Earths, 24, 111 (2006)
  20. Han M, Shi NE, Zhang WL, Li BJ, Sun JH, Chen KJ, Zhu JM, Wang X, Xu Z, Chem. Eur. J., 14, 1615 (2007)
  21. Li X, Li Q, Xia Z, Wang L, Yan W, Wang J, Boughton RI, Cryst. Growth Des., 6, 2193 (2006)
  22. Si R, Zhang YW, You LP, Yan CH, Angew. Chem. Int. Ed., 44, 3256 (2005)
  23. Towata A, Sivakumar M, Yasui K, Tuziuti T, Kozuka T, Iida Y, J. Mater. Sci., 43(4), 1214 (2008)
  24. Rasmunssen MD, Akinc M, Milius D, McTaggart MG, Ceram. Bull., 62(2), 314 (1985)
  25. Maestro P, Huguenin D, Seigneurin A, Deneuve F, Le Lann P, Berar JF, J. Elecrochem. Soc., 139, 1479 (1992)
  26. Hours T, Bergez P, Charpin J, Larbot A, Guizard C, Cot L, Ceram. Bull., 71, 200 (1992)
  27. Furlong LR, Domingues LP, Ceram. Bull., 45, 1501 (1966)
  28. Kim HJ, Son JH, Bae DS, Korean J. Mater. Res., 21(8), 415 (2011)
  29. Bae DS, Han KS, Cho SB, Choi SH, J. Kor. Associ. Cryst. Growth, 17(1), 167 (1997)
  30. Cho SB, Venigalla S, Adair JH, Science, Technology and Applications of Colloidal Suspensions, p. 139-150, ed. Adair JH, Casey JA, Randal CA, Venigalla S, American Ceramic Society, USA (1995). (1995)
  31. Wang YL, Jiang XC, Xia YN, J. Am. Chem. Soc., 125(52), 16176 (2003)
  32. Jiang LH, Sun GQ, Zhou ZH, Sun SG, Wang Q, Yan SY, Li HQ, Tian J, Guo JS, Zhou B, Xin Q, J. Phys. Chem. B, 109(18), 8774 (2005)
  33. Feldmann C, Adv. Funct. Mater., 13(2), 101 (2003)
  34. Zhong SL, Wang SJ, Liu QY, Wang YL, Wang SP, Chen JJ, Xu R, Luo LF, Mater. Res. Bull., 44(12), 2201 (2009)
  35. Kamio A, Microstructure and Properties of Aluminum Alloys (in Japanese), p. 233-235, The Jpn. Inst. of Light Met., Japan (1991). (1991)
  36. Kim YC, Kang CS, Cho JI, Jeong CY, Choi SW, Hong SK, J. Mater. Sci. Tech., 24(3), 383 (2008)
  37. Cao G, Kou S, Mater. Sci. Eng., 417, 230 (2006)
  38. Park JY, Kim ES, Park YH, Park IM, Kor. J. Mater, Res., 16(11), 668 (2006)
  39. Campbell J, Castings, 2nd ed., p. 205-231, Butterworth Heinemann, an imprint of Elsevier Science, UK (2003). (2003)
  40. Engler S, Hendrichs L, Giessereiforschung, 23(3), 101 (1973)
  41. Isobe T, Kubota M, Kitaoka S, J. Jpn. Foundrymen Soc., 50(7), 425 (1978)
  42. Mukherjee PC, Dixit MP, Indian Foundry J., 20(11), 1 (1974)
  43. Paray F, Kulunk B, Gruzleski JE, Int. J. Cast Met. Res., 13, 147 (2000)
  44. Sigworth GK, AFS Trans., 104, 1053 (1996)
  45. Tokahashi T, Kudoh M, Yodoshi K, J. Jpn. Inst. Met., 44(10), 1097 (1980)