화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.21, No.11, 617-622, November, 2011
생체용 Ti-18Nb-6Zr-XO (X = 0~1.5at%) 합금의 형상기억특성에 미치는 산소 농도의 영향
Effect of Oxygen Content on Shape Memory Characteristics of Ti-18Nb-6Zr-XO (X = 0~1.5at%) Alloys
E-mail:
The effect of oxygen on the shape memory characteristics in Ti-18Nb-6Zr-XO (X = 0-1.5 at%) biomedical alloys was investigated by tensile tests. The alloys were fabricated by an arc melting method at Ar atmosphere. The ingots were coldrolled to 0.45 mm with a reduction up to 95% in thickness. After severe cold-rolling, the plate was solution-treated at 1173 K for 1.8 ks. The fracture stress of the solution-treated specimens increased from 450 Mpa to 880 MPa with an increasing oxygen content up to 1.5%. The fracture stress increased by 287MPa with 1 at% increase of oxygen content. The critical stress for slip increased from 430 MPa to 695 MPa with an increasing oxygen content up to 1.5 at%. The maximum recovery strain of 4.1% was obtained in the Ti-18Nb-6Zr-0.5O (at%) alloy. The martensitic transformation temperature decreased by 140 K with a 1.0 at% increase in O content, which is lower than that of Ti-22Nb-(0-2.0)O (at%) by 20 K. This may have been caused by the effect of the addition of Zr. This study confirmed that addition of oxygen to the Ti-Nb-Zr alloy increases the critical stress for slip due to solid solution hardening without being detrimental to the maximum recovery strain.
  1. Oshida Y, Miyazaki S, Corrosion Eng., 40, 1009 (1991)
  2. Miyazaki S, Engineering Aspects of Shape Memory Alloys, p. 394-413, ed. Duerig TW, Melton KN, Stockel D, Wayman CM, Butterworth-Heinenmann, Guildford, UK, (1990). (1990)
  3. Miyazaki S, Otsuka K, ISIJ International, 29, 353 (1989)
  4. Shabalovskaya S, in Proceedings of the First International Conference Shape Memory and Superelastic Technologies (Pacific Grove, CA, March 1994) p. 209. (1994)
  5. Kim HY, Hashimoto S, Kim JI, Hosoda H, Miyazaki S, Mater. Trans., 45, 2443 (2004)
  6. Ho WF, Ju CP, Lin JHC, Biomaterials, 20, 2115 (1999)
  7. Grosdidier T, Philippe MJ, Mater. Sci. Eng., 291, 218 (2000)
  8. Hosoda H, Hosoda N, Miyazaki S, Trans. MRS-J, 26, 243 (2001)
  9. Kim HY, Ohmatsu Y, Kim JI, Mater. Trans., 45, 1090 (2004)
  10. Maeshima T, Nishida M, Mater. Trans., 45, 1096 (2004)
  11. Maeshima T, Nishida M, Mater. Trans., 45, 1101 (2004)
  12. Kim JI, Kim HY, Inamura T, Hosoda H, Miyazaki S, Mater. Sci. Eng., 403, 334 (2005)
  13. Lee DJ, Lee KM, Lee KK, Ryu CN, Oh TW, Kim SH, Yoon TL, Korean J. Mater. Res., 13(11), 761 (2003)
  14. Park SH, Woo KD, Kim SH, Lee SM, Kim JY, Ko HR, Kim SM, Korean J. Mater. Res., 21(7), 384 (2011)
  15. Kim JI, Kim HY, Inamura T, Hosoda H, Miyazaki S, Mater. Trans., 47(3), 505 (2006)
  16. Kim JI, Kim HY, Hosoda H, Miyazaki S, Mater. Trans., 46(4), 852 (2005)
  17. Kim HY, Sasaki T, Okutsu K, Kim JI, Inamura T, Hosoda H, Miyazaki S, Acta Mater., 54, 423 (2006)
  18. Kim HY, Kim JI, Inamura T, Hosoda H, Miyazaki S, Mater. Sci. Eng., 438-440, 839 (2006)
  19. Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S, Acta Mater., 54, 2419 (2006)
  20. Kim HY, Hashimoto S, Kim JI, Inamura T, Hosoda H, Miyazaki S, Mater. Sci. Eng., 417, 120 (2006)
  21. Chai YW, Kim HY, Hosoda H, Miyazaki S, Acta Meter., 56, 3088 (2008)
  22. Chai YW, Kim HY, Hosoda H, Miyazaki S, Acta Meter., 57, 4054 (2009)
  23. Tahara M, Kim HY, Hosoda H, Miyazaki S, Acta Meter., 57, 2461 (2009)
  24. Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S, Acta Meter., 57, 1068 (2009)
  25. Buenconsejo PJS, Kim HY, Miyazaki S, Acta Meter., 57, 2509 (2009)
  26. Inamura T, Yamamoto Y, Hosoda H, Kim HY, Miyazaki S, Acta Meter., 58, 2535 (2010)
  27. Al-Zain Y, Kim HY, Hosoda H, Nam TH, Miyazaki S, Acta Meter., 58, 4212 (2010)
  28. Buenconsejo PJS, Kim HY, Miyazaki S, Scripta Mater., 64, 1114 (2011)
  29. Al-Zain Y, Kim HY, Koyano T, Hosoda H, Nam TH, Miyazaki S, Acta Mater., 59, 1464 (2011)
  30. Tahara M, Kim HY, Hosoda H, Nam TH, Miyazaki S, Mater. Sci. Eng. A, 527, 6844 (2010)
  31. Baker C, Mat. Sci., 5, 92 (1971)