화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.21, No.5, 268-272, May, 2011
Growth and Characterization of GaN on Sapphire and Porous SWCNT Using Single Molecular Precursor
E-mail:
Due to their novel properties, GaN based semiconductors and their nanostructures are promising components in a wide range of nanoscale device applications. In this work, the gallium nitride is deposited on c-axis oriented sapphire and porous SWCNT substrates by molecular beam epitaxy using a novel single source precursor of Me2Ga(N3)NH2C(CH3)3 with ammonia as an additional source of nitrogen. The advantage of using a single molecular precursor is possible deposition at low substrate temperature with good crystal quality. The deposition is carried out in a substrate temperature range of 600-750oC. The microstructural, structural, and optical properties of the samples were analyzed by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and photoluminescence. The results show that substrate oriented columnar-like morphology is obtained on the sapphire substrate while sword-like GaN nanorods are obtained on porous SWCNT substrates with rough facets. The crystallinity and surface morphology of the deposited GaN were influenced significantly by deposition temperature and the nature of the substrate used. The growth mechanism of GaN on sapphire as well as porous SWCNT substrates is discussed briefly.
  1. Nakamura S, Harada Y, Senoh M, Appl. Phys. Lett., 58, 2021 (1991)
  2. Pearton SJ, Vartuli CB, Zolper JC, Yuan C, Stall RA, Appl. Phys. Lett., 67, 1435 (1995)
  3. Ponce FA, Bour DP, Nature, 386(6623), 351 (1997)
  4. Nakamura S, Fasol G, The blue laser diode : GaN based light emitters and lasers, p.201-205, Springer, Berlin (1997). (1997)
  5. Bour DP, Nickel NM, Van de Walle CG, Kneissl MS, Krusor BS, Mei P, Johnson NM, Appl. Phys. Lett., 76, 2182 (2000)
  6. Koo A, Budde F, Ruck BJ, Trodahl HJ, Bittar A, Preston A, Zeinert A, J. Appl. Phys., 99, 034312 (2006)
  7. Sung MM, Kim CG, Kim Y, J. Vac. Sci. Technol. A, 22(3), 461 (2004)
  8. Timoshkin AY, Bettinger HF, Schaefer HF, J. Cryst. Growth, 222(1-2), 170 (2001)
  9. Hoffman DM, Rangarajan SP, Athavale SD, Economou DJ, Liu JR, Zheng ZS, Chu WK, J. Vac. Sci. Technol. A, 14(2), 306 (1996)
  10. Kim KH, Lee KJ, Kang HS, Yu FC, Kim JA, Kim DJ, Baik KH, Yoo SH, Kim CG, Kim YS, Kim CS, Kim HJ, Ihm YE, Phys. Status Solidi B, 241, 1458 (2004)
  11. Hoa ND, Quy NV, Cho Y, Kim D, Sensor. Actuator. B Chem., 135, 656 (2009)
  12. Devi A, Rogge W, Wohlfart A, Hipler F, Becker HW, Fischer RA, Chemical Vapor Deposition, 6, 245 (2000)
  13. Boo JH, Lee SB, Yu KS, Sung MM, Kim Y, Surf. Coating. Tech., 131, 147 (2000)
  14. Zhu JJ, Yao R, Song HY, Fu ZX, Kuznetsov AY, Lee IH, J. Vac. Sci. Technol. A, 26(2), 224 (2008)
  15. Rushworth SA, Brown JR, Houlton DJ, Jones AC, Roberts V, Roberts JS, Critchlow GW, Adv. Mater. Optic. Electron., 6, 119 (1996)
  16. Lim H, Chandrasekar PV, Chang D, Ahn S, Jung H, Kim D, Korean J. Mater. Res., 20(4), 199 (2010)
  17. Harima H, J. Phys. Condens. Matter., 14, R967 (2002)
  18. Sun WH, Wang ST, Zhang JC, Chen KM, Qin GG, Tong YZ, Yang ZJ, Zhang GY, Pu YM, Zhang QL, Li J, Lin JY, Jiang HX, J. Appl. Phys., 88, 5662 (2000)
  19. Reynolds DC, Look DC, Jogai B, Van Nostrand JE, Jones R, Jenny J, Solid State Comm., 106, 701 (1998)