화학공학소재연구정보센터
Clean Technology, Vol.2, No.1, 69-79, June, 1996
고온에서 천연산 망간광석과 황화수소의 반응특성
Reaction of Natural Manganese Dioxide with Hydrogen Sulfide at High-Temperature
초록
석탄가스화기에서 방출되는 황을 제어하는 것은 가스정화시스템에서 연료가스 중의 황화수소를 제거하는 것이다. 이에 본 연구에서는 천연산 망간광석의 황화수소 제거능에 영향을 미치는 탈황제의 입자크기, 황화반응 온도 및 탈황제 특성에 대해서 고찰하였다 실험결과 황화수소 제거능은 반응온도 700℃에서 효과적이었으며 입자크기가 작을수록 탈황효율은 증가하였으나 그 차이는 크지 않았다. 온도가 증가할수록 탈황제의 응집으로 인해 입자 내 물질전달저항이 증가하여 반응성이 저하되며 SEM 사진으로 탈황제의 응집을 확인할 수 있었다. 실험으로부터 구한 평형비 (PH2O/ PH2S)는 log (PH2O/PH2S) = 5653/T - 3.7909였다. 천연산 망간광석의 황화수소 제거능이 기존에 개발되어 있는 탈황제들과 비슷하기 때문에 탈황제로 사용할 수 있음을 알았다.
Sulfur emission control in coal gasification plants implies the removal of HaS from the fuel gas in the gas clean-up system. In this study, the effects of particle size of sorbents, temperature of sulfidation and sorbent characteristics on the H2S removal efficiency of manganese ore were investigated. Experimental results showed that the removal efficiency of H2S was optimum when the temperature was about 700℃. And that the smaller particle size, the higher the H2S removal efficiency, but that was not effective very much. As the temperature increases, the reactivity of sorbents has lowered because agglomeration of sorbents increased the intraparticle transport resistance. This phenomenon was cofirmed by SEM photographs. The equilibrium (PH2O/PH2O) obtained by experiments is represented as a log (PH2O/ PH2S) = 5653/T - 3.7909. It was showed that the natural manganese ore could be used as a sorbent because its capacity for H2S removal is equivalent to the eariler developed sorbents.
  1. Notestein JE, Commercial Gasifier for IGCC Applications, Study Report. U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, June (1990)
  2. Woods MC, Gangwal SK, Jothimurugesan K, Harrison DP, Ind. Eng. Chem. Res., 29(7), 1160 (1990) 
  3. Hepworth MT, Ben-Slimane R, Hot Coal Gas Desulfurization with Manganese - Based Regenerable Sorbents, Proceedings of the Cool-Fired Power Systems 93-Advances in JGCC and PFBC Review Meeting, 1993; Bonk, David L., Ed.; DOE/Metc-93/6131; NTIS; Springfield, VA, 432 (1993)
  4. Westmoreland PR, Harrison DP, Environ. Sci. Technol., 10, 659 (1976) 
  5. Westmoreland PR, Gibson JB, Harrison DP, Environ. Sci. Technol., 11(5), 488 (1977) 
  6. Turkdogan ET, Olsson RG, Desulfurization of Hot Reducing Gases with Manganese Oxide Pellets. Proceedings of the Third International Iron and Steel Congress ASM; ASM International: Materials Park, OH, 277 (1979)
  7. Jha MC, Hepworth MT, Enhanced Sorbent Durability for Hot Gas Desulfurization, DOE Contract DE-AC21-84MC21168, Final Report (1986)
  8. Hepworth MT, Bezn-Silmane R, Zhong S, Energy Fuels, 7(6), 602 (1993) 
  9. Rosenqvist T, Trans. AIME, Vol. 191, 535 (1951)
  10. Turkdogan ET, Olsson RG, Vinters JV, MEt. Trans. B, 8B, 59 (1977)
  11. Rosenqvist T, J. Iron Steel Inst., 176, 37 (1954)
  12. Barken LS, Gurry RW, J. Am. Chem. Soc., 67, 1398 (1945)
  13. Turkdogan ET, Ironmaking Steelmaking, 20(6), 469 (1993)
  14. Foglet HS, "Elements of Chemical Reaction Engineering," Presentice-Hall, New Jersey, 5319 (1986)
  15. Benslimane R, Hepworth MT, Energy Fuels, 8(6), 1175 (1994) 
  16. Stroch F, Balakotaiah V, AIChE J., 37(7), 1035 (1991) 
  17. Ayala RE, Marsh DW, Ind. Eng. Chem. Res., 30, 55 (1991) 
  18. Lew S, Jothimurugesan K, Flytzani-Stephanopoulos M, Ind. Eng. Chem. Res., 28, 535 (1989)