화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.21, No.3, 161-167, March, 2011
Mechanical and Oxidation Properties of Cold-Rolled Zr-Nb-O-S Alloys
E-mail:
The stress-strain responses and oxidation properties of cold-rolled Zr-1.5Nb-O and Zr-1.5Nb-O-S alloys were studied. The U.T.S. (ultimate tensile strength) of cold-rolled Zr-1.5Nb-O-S alloy with 160 ppm sulfur (765 MPa) were greater than that of Zr-1Nb-1Sn-0.1Fe alloy (750 MPa), achieving an excellent mechanical strength even after the elimination of Sn, an effective solution strengthening element. The addition of sulfur increased the strength at the expense of ductility. However, the ductile fracture behavior was observed both in Zr-Nb-O and Zr-Nb-O-S alloys. The beneficial effect of sulphur on the strengthening was observed in the cold rolled Zr-1.5Nb-O-S alloys. The activation volume of cold-rolled Zr-1.5Nb decreased with sulfur content in the temperature region of dynamic strain aging associated with oxygen atoms. Insensitivity of the activation volume to the dislocation density and the decrease of the activation volume at a higher temperature where the dynamic strain aging occurs support the suggestion linking the activation volume with the activated bulge of dislocations limited by segregation of oxygen and sulfur atoms. The addition of sulfur was also found to improve the oxidation resistance of Zr-Nb-O alloys.
  1. Robertson JAL, J. Nucl. Mater., 100, 108 (1981)
  2. Tenckhoff E, Rittenhouse PL, J. Nucl. Mater., 35, 14 (1970)
  3. Ibrahim EF, Choubey R, Jonas JJ, J. Nucl. Mater., 126, 44 (1984)
  4. Holt RA, J. Nucl. Mater., 159, 310 (1988)
  5. Liu W, Li Q, Zhou B, Yan Q, Yao M, J. Nucl. Mater., 341, 97 (2005)
  6. Charquet D, Senevat J, Marcon JP, J. Nucl. Mater., 255, 78 (1998)
  7. Chang KI, Hong SI, J. Nucl. Mater., 373, 16 (2008)
  8. Stewart AJ, Schmidt MW, Geophys. Res. Lett., 34, L13201 (2007)
  9. Bika D, McMahon Jr CJ, Acta Metall. Mater., 43, 1909 (1995)
  10. Wu RQ, Freeman AJ, Olson GB, Science, 265(5170), 376 (1994)
  11. Charquet D, J. Nucl. Mater., 304, 246 (2002)
  12. Ferrer F, Barbu A, Bretheau T, Crepin J, Willaime F, Charquet D, p. 863, Thirteenth International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1423, ASTM International, West Conshohocken, USA (2002). (2002)
  13. Ko S, Hong SI, Kim KT, J. Nucl. Mater., 404, 154 (2010)
  14. Conrad H, J. Met., 16, 582 (1964)
  15. Luton MJ, Jonas JJ, Can. Metall. Q., 11, 79 (1972)
  16. Fleisgher RL, Acta Metall., 11, 203 (1963)
  17. Fleisgher RL, Acta Metall., 9, 996 (1961)
  18. Morinaga M, Kamado S, Model. Simulat. Mater. Sci. Eng., 1, 151 (1993)
  19. Hong SI, Ryu WS, Rim CS, J. Nucl. Mater., 116, 314 (1983)
  20. Hong SI, Mater. Sci. Eng., 64, L19 (1984)
  21. Basinski ZS, Foxall RA, Pascual R, Scripta Metall., 6, 807 (1972)
  22. Hong SI, Laird C, Acta Metall. Mater., 38, 1581 (1990)
  23. Ege S, Organic Chemistry, 5th ed., p.27, Houghton Miffin Harcourt, Boston, USA (2003). (2003)
  24. Hu D, Huang AJ, Song XP, Wu X, J. Alloy Comp., 413, 77 (2006)
  25. Seo SM, Lee KS, Lee KA, Korean J. Mater. Res., 14(3), 163 (2004)