화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.19, No.12, 637-643, December, 2009
실리콘 산화질화물 기지상 적용에 따른 Au 나노입자 분산 복합체 박막의 광학적 특성
Effect of Silicon Oxynitride Matrix on the Optical Properties of Au Nanoparticles Dispersed Composite Film
E-mail:
In this study, we analyzed the effect of silicon oxynitride matrix on the optical properties of Au nanopartic les dispersed on composite film and explored the effectiveness of the silicon in fine tuning the refractive index of the composite film for applications in optical waveguide devices. The atomic fraction of nitrogen in SiOxNy films was controlled by varying the relative flow ratio of nitrogen gas in reactive sputtering and was evaluated optically using an effective medium theory with Bruggeman geometry consisting of a random mixture between SiO2 and Si3N4. The Au nanoparticles were embedded in the SiOxNy matrix by employing the alternating deposition technique and clearly showed an absorption peak due to the excitation of surface plasmon. With increasing nitrogen atomic fraction in the matrix, the surface plasmon resonance wavelength shifted to a longer wavelength (a red-shift) with an enhanced resonance absorption. These characteristics were interpreted using the Maxwell-Garnett effective medium theory. The formation of a guided mode in a slab waveguide consisting of 3 μm thick Au:SiOxNy nanocomposite film was confirmed at the telecommunication wavelength of 1550 nm by prism coupler method and compared with the case of using SiO2 matrix. The use of SiOxNy matrix provides an effective way of controlling the mode confinement while maintaining or even enhancing the surface plasmon resonance properties.
  1. Miller A, Welford KR, Diano B, Nolinear optical materials and devices for applications in information technology, Nato ASI ser. vol. 289, p. 104, Kluwer Academic Publisher, Netherlands, (1993). (1993)
  2. Wada O, New J. Phys., 6, 183 (2004)
  3. Chakraborty P, J. Mater. Sci., 33(9), 2235 (1998)
  4. Gonella F, Mazzoldi P, Handbook of nanostructured materials and nanotechnology, vol. 4, chap. 2., p. 81, ed. H. S. Nalwa, Academic Press, San Diego, (2000). (2000)
  5. Okamoto T, Haraguchi M, Fukui M, Jpn. J. Appl. Phys., 39, 3977 (2000)
  6. Lee KS, Lee TS, Kim WM, Cho S, Lee S, Appl. Phys. Lett., 91, 141905 (2007)
  7. Dalacu D, Martinu L, J. Opt. Soc. Am. B, 18, 85 (2001)
  8. Wang J, Lau WM, Li Q, J. Appl. Phys., 97, 114303 (2005)
  9. Lee JS, Koo KH, Park HH, Korean J. Mater. Res., 19(10), 527 (2009)
  10. Hache H, Ricard D, Flytzanis C, J. Opt. Soc. Am. B, 3, 1647 (1986)
  11. Jun HS, Lee KS, Yoon SH, Lee TS, Kim IH, Jeong JH, Cheong B, Kim DS, Cho KM, Kim WM, Phys. Status Solidi A, 303, 1211 (2006)
  12. Cho S, Lee S, Lee TS, Cheong B, Kim WM, Lee KS, J. Appl. Phys., 102, 123501 (2007)
  13. Tan X, Wojcik J, Mascher P, J. Vac. Sci. Technol. A, 22(4), 1115 (2004)
  14. Tanahashi I, Manabe Y, Tohda T, Sasaki S, Nakamura A, J. Appl. Phys., 79, 1244 (1996)
  15. Cho SH, Lee S, Ku DY, Lee TS, Cheong B, Kim WM, Lee KS, Thin Solid Films, 447-448, 68 (2004)
  16. Wang H, J. Opt. Soc. Am. A, 11, 2331 (1994)
  17. Pinard L, Mackowski JM, Appl. Opt., 36, 5451 (1997)
  18. Modreanu M, Tomozeiu N, Cosmin P, Gartner M, Thin Solid Films, 337(1-2), 82 (1999)
  19. Philipp HR, Handbook of optical constants of solids, vol. 1, p.759, p.774, ed. Palik ED, Academic press, New York, (1985). (1985)
  20. Ricard D, Roussognal P, Flytzanis C, Opt. Lett., 10, 511 (1985)
  21. Kreibig U, Vollmer M, Optical properties of metal clusters, p.80, Springer, Berin, (1995). (1995)
  22. Liu T, Samuels R, J. Polym. Sci. B: Polym. Phys., 39(20), 2481 (2001)
  23. Li SL, Wang KM, Chen F, Wang XL, Fu G, Opt. Exp., 12, 747 (2004)