화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.19, No.12, 667-673, December, 2009
다중벽 탄소 나노 튜브에 담지한 PtxM(1-x)(M = Co, Cu, Ni) 합금촉매의 제조 및 고분자 전해질 연료전지에서 산소환원 특성
Synthesis and Oxygen Reduction Reaction Characteristics of Multi-Walled Carbon Nanotubes Supported PtxM(1-x)(M = Co, Cu, Ni) Alloy Catalysts for Polymer Electrolyte Membrane Fuel Cell
E-mail:
The electrocatalytic characteristics of oxygen reduction reaction of the PtxM(1-x)(M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The PtxM(1-x)/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the PtxM(1-x) particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and PtxM(1-x)/MWNTs catalysts are seen as FCC, and synthesized PtxM(1-x) crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, Pt0.77Co0.23/ MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or PtxM(1-x)/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/ C catalyst. Among the MWNTs-supported Pt and PtxM(1-x)(M = Co, Cu, Ni) catalysts, the Pt0.77Co0.23/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.
  1. Lufrano F, Passalacqua E, Squadrito G, Patti A, Giorgi L, J. Appl. Electrochem., 29(4), 445 (1999)
  2. Koh S, Yu C, Mani P, Srivastava R, Strasser P, J. Power Sources, 172, 50 (2008)
  3. Antolini E, Salgado JRC, Gonzalez ER, J. Power Sources, 160(2), 957 (2006)
  4. Wei ZD, Feng YC, Li L, Liao MJ, Fu Y, Sun CX, Shao ZG, Shen PK, J. Power Sources, 180(1), 84 (2008)
  5. Xiong L, Kannan AM, Manthiram A, Electrochem. Commun., 4, 898 (2002)
  6. Jung DW, Park S, Kang JT, Kim JB, Korean J. Mater. Res., 19(5), 233 (2009)
  7. Dicks AL, J. Power Sources, 156(2), 128 (2006)
  8. Shao YY, Wang J, Kou R, Engelhard M, Liu J, Wang Y, Lin YH, Electrochim. Acta, 54(11), 3109 (2009)
  9. Zhang SS, Yuan XZ, Wang HJ, Merida W, Zhu H, Shen J, Wu SH, Zhang JJ, Int. J. Hydrog. Energy, 34(1), 388 (2009)
  10. Shao YY, Yin GP, Gao YZ, J. Power Sources, 171(2), 558 (2007)
  11. Ferreira PJ, la O' GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA, J. Electrochem. Soc., 152(11), A2256 (2005)
  12. Virkar AV, Zhou YK, J. Electrochem. Soc., 154(6), B540 (2007)
  13. Yu XW, Ye SY, J. Power Sources, 172(1), 145 (2007)
  14. Iijima S, Nature, 354, 56 (1991)
  15. Reddya ALM, Rajalakshmib N, Ramaprabhu S, Carbon, 46, 2 (2008)
  16. Li L, Xing YC, J. Power Sources, 178(1), 75 (2008)
  17. Niu JJ, Wang JN, Electrochim. Acta, 53(27), 8058 (2008)
  18. Shi Y, Yang R, Yuet PK, Carbon, 47, 1146 (2009)
  19. Queipo P, Nasibulin AG, Gonzalez D, Tapper U, Jiang H, Tsuneta T, Grigoras K, Duenas JA, Kauppinen EI, Carbon, 44, 1581 (2006)
  20. Xie S, Li W, Pan Z, Chang B, Sun L, J. Phys. Chem. Solids, 61, 1153 (2000)
  21. Belin T, Epron F, Mater. Sci. Eng. B, 119, 105 (2005)
  22. Yang C, Hu X, Wang D, Dai C, Zhang L, Jin H, Agathopoulos S, J. Power Sources, 106, 187 (2006)
  23. Wang X, Li WZ, Chen ZW, Waje M, Yan YS, J. Power Sources, 158(1), 154 (2006)
  24. Fornes TD, Baur JW, Sabba Y, Thomas EL, Polymer, 47(5), 1704 (2006)
  25. Liu ZL, Gan LM, Hong L, Chen WX, Lee JY, J. Power Sources, 139(1-2), 73 (2005)