Korean Journal of Materials Research, Vol.19, No.12, 667-673, December, 2009
다중벽 탄소 나노 튜브에 담지한 PtxM(1-x)(M = Co, Cu, Ni) 합금촉매의 제조 및 고분자 전해질 연료전지에서 산소환원 특성
Synthesis and Oxygen Reduction Reaction Characteristics of Multi-Walled Carbon Nanotubes Supported PtxM(1-x)(M = Co, Cu, Ni) Alloy Catalysts for Polymer Electrolyte Membrane Fuel Cell
E-mail:
The electrocatalytic characteristics of oxygen reduction reaction of the PtxM(1-x)(M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The PtxM(1-x)/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the PtxM(1-x) particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and PtxM(1-x)/MWNTs catalysts are seen as FCC, and synthesized PtxM(1-x) crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, Pt0.77Co0.23/ MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or PtxM(1-x)/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/ C catalyst. Among the MWNTs-supported Pt and PtxM(1-x)(M = Co, Cu, Ni) catalysts, the Pt0.77Co0.23/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.
Keywords:Pt alloy catalyst;carbon nanotubes;polymer electrolyte membrane fuel cell;oxygen reduction reaction
- Lufrano F, Passalacqua E, Squadrito G, Patti A, Giorgi L, J. Appl. Electrochem., 29(4), 445 (1999)
- Koh S, Yu C, Mani P, Srivastava R, Strasser P, J. Power Sources, 172, 50 (2008)
- Antolini E, Salgado JRC, Gonzalez ER, J. Power Sources, 160(2), 957 (2006)
- Wei ZD, Feng YC, Li L, Liao MJ, Fu Y, Sun CX, Shao ZG, Shen PK, J. Power Sources, 180(1), 84 (2008)
- Xiong L, Kannan AM, Manthiram A, Electrochem. Commun., 4, 898 (2002)
- Jung DW, Park S, Kang JT, Kim JB, Korean J. Mater. Res., 19(5), 233 (2009)
- Dicks AL, J. Power Sources, 156(2), 128 (2006)
- Shao YY, Wang J, Kou R, Engelhard M, Liu J, Wang Y, Lin YH, Electrochim. Acta, 54(11), 3109 (2009)
- Zhang SS, Yuan XZ, Wang HJ, Merida W, Zhu H, Shen J, Wu SH, Zhang JJ, Int. J. Hydrog. Energy, 34(1), 388 (2009)
- Shao YY, Yin GP, Gao YZ, J. Power Sources, 171(2), 558 (2007)
- Ferreira PJ, la O' GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA, J. Electrochem. Soc., 152(11), A2256 (2005)
- Virkar AV, Zhou YK, J. Electrochem. Soc., 154(6), B540 (2007)
- Yu XW, Ye SY, J. Power Sources, 172(1), 145 (2007)
- Iijima S, Nature, 354, 56 (1991)
- Reddya ALM, Rajalakshmib N, Ramaprabhu S, Carbon, 46, 2 (2008)
- Li L, Xing YC, J. Power Sources, 178(1), 75 (2008)
- Niu JJ, Wang JN, Electrochim. Acta, 53(27), 8058 (2008)
- Shi Y, Yang R, Yuet PK, Carbon, 47, 1146 (2009)
- Queipo P, Nasibulin AG, Gonzalez D, Tapper U, Jiang H, Tsuneta T, Grigoras K, Duenas JA, Kauppinen EI, Carbon, 44, 1581 (2006)
- Xie S, Li W, Pan Z, Chang B, Sun L, J. Phys. Chem. Solids, 61, 1153 (2000)
- Belin T, Epron F, Mater. Sci. Eng. B, 119, 105 (2005)
- Yang C, Hu X, Wang D, Dai C, Zhang L, Jin H, Agathopoulos S, J. Power Sources, 106, 187 (2006)
- Wang X, Li WZ, Chen ZW, Waje M, Yan YS, J. Power Sources, 158(1), 154 (2006)
- Fornes TD, Baur JW, Sabba Y, Thomas EL, Polymer, 47(5), 1704 (2006)
- Liu ZL, Gan LM, Hong L, Chen WX, Lee JY, J. Power Sources, 139(1-2), 73 (2005)