화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.19, No.4, 220-223, April, 2009
고체 전해질로서의 LiH2PO4 결정
LiH2PO4 Crystal as a Solid Electrolyte
E-mail:
Lithium dihydrogen phosphate (LiH2PO4) powder was purchased from Aldrich Chemical Co. From the scanning electron microscope (SEM) observation, these polycrystals have dimensions in the range of 25-250 μm. The electrical conductivity was measured at a measuring frequency of 1 kHz on heating polycrystalline lithium dihydrogen phosphate (LiH2PO4) from room temperature to 493 K. Two anomalies appeared at 451 K (Tp1) and 469 K (Tp2). The electrical conductivity reached the magnitude of the superprotonic phases: 3×10-2 Ω-1cm-1 at 451 K (Tp1) and 1.2×10 Ω-1cm-1 at 469 K (Tp2). It is uncertain whether the superprotonic phase transformations are due to polymorphic transitions in the bulk, surface transitions, or chemical reactions (thermal decomposition) at the surface. Considering several previous thermal studies (differential scanning calorimetry and thermogravimetry), our experimental results seem to be related to the last case: chemical reactions (thermal decomposition) at the surface with the progressive solid-state polymerization.
  1. Colomban P, Proton Conductors: Solids, Membranes and Gels - Materials and Devices, Cambridge University Press, Cambridge, England, (1992). (1992)
  2. Special Issue on KH2PO4-type Ferro- and Antiferroelectrics, Ferroelectrics, 71 (1987). (1987)
  3. Catti M, Ivaldi G, Z. Kristallogr., 146, 217 (1977)
  4. Ge L, Ran R, Cai R, Shao Z, Prog. Chem., 20, 405 (2008)
  5. Taninouchi YK, Uda T, Awakura Y, Ikeda A, Haile SM, J. Mater. Chem., 17, 3182 (2007)
  6. Ponomareva VG, Shutova ES, Solid State Ion., 178(7-10), 729 (2007)
  7. Ponomareva VG, Shutova ES, Russ. J. Electrochem., 43, 513 (2007)
  8. Haile SM, Chisholm CRI, Sasaki K, Boysen DA, Uda T, Faraday Discuss., 134, 17 (2007)
  9. Norman TJ, Zaug JM, Carr CW, Chem. Mater., 18, 3074 (2006)
  10. Otomo J, Tamaki T, Nishida S, Wang SQ, Ogura M, Kobayashi T, Wen CJ, Nagamoto H, Takahashi H, J. Appl. Electrochem., 35(9), 865 (2005)
  11. Matsui T, Kukino T, Kikuchi R, Eguchi K, Electrochem. Solid State Lett., 8(5), A256 (2005)
  12. Boysen DA, Haile SM, Liu H, Secco RA, Chem. Mater., 15, 727 (2003)
  13. Merle RB, Chisholm CRI, Boysen DA, Haile SM, Energy Fuels, 17(1), 210 (2003)
  14. Otomo J, Minagawa N, Wen CJ, Eguchi K, Takahashi H, Solid State Ion., 156(3), 357 (2003)
  15. Park JH, Lee KS, Kim JN, J. Phys.: Condens. Matter, 8, 5491 (1996)
  16. Park JH, Lee KS, Kim JN, J. Kor. Phys. Soc., 32, S1149 (1998)
  17. Park JH, Lee KS, Kim JN, J. Phys.: Condens. Matter, 10, 9593 (1998)
  18. Park JH, Lee KS, Choi BC, J. Phys.: Condens. Matter, 13, 9411 (2001)
  19. Lee KS, Ko JH, Schmidt VH, J. Kor. Phys. Soc., 46, 104 (2005)
  20. Lee KS, Ko JH, Moon J, Lee S, Jeon M, Solid State Comm., 145, 487 (2008)
  21. Lee KS, Moon J, Lee J, Jeon M, Solid State Comm., 147, 74 (2008)
  22. Lee KS, J. Phys. Chem. Solids, 57, 333 (1996)
  23. Lee KS, Ferroelectrics, 268, 369 (2002)