화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.19, No.1, 24-27, January, 2009
DC 마그네트론 스퍼터링 방법을 이용하여 증착한 IGZO 박막트랜지스터의 특성
Characteristics of IGZO Thin Film Transistor Deposited by DC Magnetron Sputtering
E-mail:
Indium Gallium Zinc Oxide (IGZO) thin films were deposited onto 300 nm-thick oxidized Si substrates and glass substrates by direct current (DC) magnetron sputtering of IGZO targets at room temperature. FESEM and XRD analyses indicate that non-annealed and annealed IGZO thin films exhibit an amorphous structure. To investigate the effect of an annealing treatment, the films were thermally treated at 300 oC for 1hr in air. The IGZO TFTs structure was a bottom-gate type in which electrodes were deposited by the DC magnetron sputtering of Ti and Au targets at room temperature. The non-annealed and annealed IGZO TFTs exhibit an Ion/Ioff ratio of more than 105. The saturation mobility and threshold voltage of nonannealed IGZO TFTs was 4.92 × 10-1 cm2/V·s and 1.46 V, respectively, whereas these values for the annealed TFTs were 1.49 × 10-1 cm2/V · s and 15.43 V, respectively. It is believed that an increase in the surface roughness after an annealing treatment degrades the quality of the device. The transmittances of the IGZO thin films were approximately 80 %. These results demonstrate that IGZO thin films are suitable for use as transparent thin film transistors (TTFTs).
  1. Fortunato E, Barquinha P, Pimentel A, Goncalves A, Marques A, Pereira L, Martins R, Thin Solid Films, 487(1-2), 205 (2005)
  2. Hosono H, Thin Solid Films, 515(15), 6000 (2007)
  3. Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H, Science, 300, 1269 (2003)
  4. Hoffman RL, Norris BJ, Wager JF, Appl. Phys. Lett., 82, 733 (2003)
  5. Martins R, Almeida P, Barquinha P, Pereira L, Ferreira I, Fortunato E, J. Non. Cryst. Solids, 352, 1471 (2006)
  6. Yabuta H, Sano M, Abe K, Aiba T, Den T, Kumomi H, Nomura K, Kamiya T, Hosono H, Appl. Phys. Lett., 89, 112123 (2006)
  7. Fortunato EMC, Barquinha PMC, Pimentel ACMBG, Goncalves AMF, Marques AJS, Pereira LMN, Martins RFP, Adv. Mater., 17(5), 590 (2005)
  8. Kim CJ, Kang DH, Song IH, Park JC, Lim H, Kim SI, Lee BH, Chung RJ, Lee JG, Park YS, IEDM Tech. Dig, 11.6.1 (2006)
  9. Chiang HQ, Wager JF, Hoffman RL, Jeong J, Keszler DA, Appl. Phys. Lett., 86, 013503 (2005)
  10. Lavareda G, Nunes de Carvalho C, Fortunato E, Ramos AR, Alves E, Conde O, Amaral A, J. Non-Cryst. Solids, 352, 2311 (2006)
  11. Matsuzaki K, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M, Hosono H, Thin Solid Films, 496(1), 37 (2006)
  12. Presley RE, Munsee CL, Park CH, Wager JF, Keszler DA, J. Phys. D: Appl. Phys., 37, 2810 (2004)
  13. Hu G, Kumar B, Gong H, Chor EF, Wu P, Appl. Phys. Lett., 88, 101901 (2006)
  14. Jeon H, Verma VP, Hwang S, Lee S, Park C, Kim DH, Choi W, Jeon M, Jpn. J. Appl. Phys., 47, 87 (2008)
  15. Lim W, Wang YL, Ren F, Norton DP, Kravchenko II, Zavada JM, Pearton SJ, Appl. Surf. Sci., 254, 2828 (2008)
  16. Hong D, Chiang HQ, Wager JF, J. Vac. Sci. Technol. B, 24(5), L23 (2006)
  17. Jeong JK, Kim M, Jeong JH, Lee HJ, Ahn TK, Shin HS, Kang KY, Seo H, Park JS, Yang H, Chung HJ, Mo YG, Kim HD, IMID Digest, 145 (2007)
  18. Suresh A, Gollakota P, Wellenius P, Dhawan A, Muth JF, Thin Solid Films, 516(7), 1326 (2008)
  19. Kumomi H, Nomura K, Kamiya T, Hosono H, Thin Solid Films, 516(7), 1516 (2008)
  20. Lim W, Kim S, Wang YL, Lee JW, Norton DP, Pearton SJ, Ren F, Kravchenko II, J. Electrochem. Soc., 155(6), H383 (2008)