화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.18, No.5, 235-240, May, 2008
Structural Modification of Alkali Tellurite Binary Glass System and Its Characterization
E-mail:
This paper presents results and observations obtained from a study of the optical and thermal properties of alkali tellurite depending on the composition. Fourier transform infrared (FT-IR) spectra showed evidence of chemical modification from TeO4 trigonal bipyramids (tbp) to TeO3 trigonal pyramids (tp) in tellurite glasses. The optical band gaps of the different glass samples calculated using Tauc’s method were found to range from 3.5-3.8 eV. The glass transition temperature (Tg) and glass stability (ΔT) of alkali tellurite glasses were investigated, as M2O [M: Li, Na, K] amounted to 25mol%, through the use of differential thermal analysis (DTA). The coefficient of thermal expansion (CTE) was measured in a thermo mechanical analysis (TMA) with a slow heating rate after the glass samples were annealed. The results confirm that the optical band gap of alkali tellurite glasses depends on the Te-O-Te structural relaxation related to the ratio of bridging/non bridging oxygen (BO/NBO). In contrast, the thermal properties are related to the ionic field strength of the Te-O-M and M-O-M bonds, and the Te-O-Te breakage depends on the ratio of BO/NBO.
  1. Lin H, Yang D, Liu G, Ma T, Zhai B, An Q, Yu J, Wang X, Liu X, Pun EY, J. Lumin., 113, 121 (2005)
  2. Assefa Z, Haire RG, Raison PE, Spectrochim. Acta. A, 60 (2004)
  3. Walsh In BM: Di Bartoloand B, Forte O, Editors, Advances in Spectroscopy for Lasers and Sensing, Springer, Netherlands (2006), p. 403 (2006)
  4. Poirier G, Cassanges FC, De Arau' jo CB, Jerez VA, Ribeiro SJL, Messaddeq Y, Poulain M, J. Appl. Phys., 93, 3259 (2003)
  5. De Almeida R, DaSilva DM, Kassab LRP, Dde Arau'jo CB, Optics Communications, 281, 108 (2008)
  6. Kim SH, Yoko T, J. Am. Ceram. Soc., 78, 1061 (1995)
  7. Prakash GV, Rao DN, Bhatnagar AK, Solid State Commun., 119, 39 (2001)
  8. Kim HG, Ryu BK, Cha JM, Kim BK, Lee LS, J. Kor. Ceram. Soc., 40(11), 1078 (2003)
  9. Kim SH, Yoko T, Sakka S, J. Am. Ceram. Soc., 76, 2486 (1993)
  10. Dimitriev Y, Dimitrov V, Mater. Res. Bull., 13, 1071 (1978)
  11. Dimitriev Y, Dimitrov V, Arnaudov M, J. Mater. Sci., 18, 1353 (1983)
  12. Sakida S, Hayakawa S, Yoko T, J. Phys.: Condens. Matter, 12, 2579 (2000)
  13. Sakida S, Hayakawa S, Yoko T, J. Am. Ceram. Soc., 84(4), 836 (2001)
  14. Heo J, Lam D, Sigel GH, Mendoza EA, Hensley DA, J. Am. Ceram. Soc., 75, 277 (1992)
  15. FritzsheIn H: Tauc J, Editor, Amorphous and Liquid Semiconductors, Plenum, London (1974), p. 221. (1974)
  16. Dayanand C, Sarma RVGK, Bhikshamaiah G, Salagram M, J. Non-Cryst. Solids, 167, 122 (1994)
  17. Dietzel A, Angew Physik Chem, 48, 9 (1942)
  18. Shartis L, Spinner S, Capps W, J. Am. Ceram. Soc., 35, 155 (1952)