Applied Chemistry for Engineering, Vol.26, No.1, 53-58, February, 2015
그래핀 옥사이드(GO)의 환원정도가 PC-GO 화학반응 및 물성에 미치는 영향
Effects of the Degree of GO Reduction on PC-GO Chemical Reactions and Physical Properties
E-mail:
초록
3 phr의 그래핀 옥사이드(GO)를 포함하는 폴리카보네이트(PC)/GO를 클로로포름에서 용액 혼합하여 응고물 침전한 후 240, 260, 280 ℃의 이축압출기를 이용하여 PC/GO 복합체를 제조하였다. DSC와 TGA 측정결과 PC/GO 복합체의 유리전이 온도(Tg)의 변화는 거의 없었고, 분해거동을 통해 확인한 열안정성의 경우 260 ℃ 압출시편이 우수하게 나타났다. 동적기계적분석(DMA)을 이용한 저장탄성률 측정결과 PC 대비 PC/GO 복합체의 값이 크게 나타났으며 압출온도별로는 큰 차이가 없는 것을 확인하였다. 이들 결과로부터 환원시간에 따른 PC/RGO 복합체의 압출온도를 260 ℃로 고정하였다. GO의 환원시간에 따른 PC/RGO 복합체의 화학반응 정도는 3000 cm-1 부근에서 나타나는 C-H 신축진동 피크를 통해 확인하였고, 환원시간이 1 h일 때의 GO와 유사한 화학반응 정도를 나타내었다. GO의 환원시간에 따른 PC/GO 복합체의 복소점도(complex viscosity)가 감소하는 것을 확인하였으며, 이는 PC-GO 사이의 화학반응에 의한 분산성에 기인한 것으로 주사전자현미경(SEM)을 통해 확인하였다.
Polycarbonate (PC)/graphene oxide (GO) composites with 3 phr of GO were prepared by using a twin screw extruder at 240, 260, and 280 ℃ after mixing the solution with chloroform. It was confirmed by DSC and TGA that the glass transition temperature (Tg) of PC/GO composites were not changed and the thermal stability was the best in case of the extrusion temperature at 260 ℃. Thermo mechanical properties of PC/GO composites according to extrusion temperatures were measured by dynamic mechanical analysis (DMA). Storage moduli of PC/GO composites were higher than that of pure PC and there was no detectable changes at varying the extrusion temperature. Based on these results, the extrusion temperature of PC/GO composites was fixed at 260 ℃. The degree of the chemical reaction of PC/GO composites with respect to the GO reduction time was confirmed by the C-H stretching peak at 3000 cm-1 and the degree of the chemical reaction was similar to that of GO when the reduction time was 1 h. A decrease in the complex viscosity as a function of the GO reduction time was detected by dynamic rheometer, which may be originated from the enhancement of GO dispersion by PC-GO reaction. The GO dispersion was confirmed by scanning electron microscope (SEM).
- Lee BY, Dahal P, Kim HS, Yoo SY, Kim YC, Appl. Chem. Eng., 23(4), 388 (2012)
- Choi SJ, Yoon KH, Hwang IH, Lee CY, Kim HS, Yoo SY, Kim YC, Appl. Chem. Eng., 21(5), 532 (2010)
- Kim HJ, Um GJ, Journal of Korea TAPPI, 38, 68 (2006)
- Kim CO, Kim JW, Journal of Natural Sciencesm, 19, 67 (2000)
- Moon HG, Chang JH, Polym.(Korea), 35(3), 265 (2011)
- Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22(35), 3906 (2010)
- Han JT, Jeong SY, Jeong HJ, Lee GW, Korean Ind. Chem. News, 15(1), 23 (2012)
- Park S, Korean Ind. Chem. News, 16(3), 1 (2013)
- Fang M, Wang K, Lu H, Yang Y, Nutt S, J. Mater. Chem., 19, 7098 (2009)
- Kim H, Kobayashi S, AbdurRahim MA, Zhang MLJ, Khusainova A, Hillmyer MA, Abdala AA, Macosko CW, Polymer, 52(8), 1837 (2011)
- Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B, Tang B, Chan M, Kim JK, Adv. Mater., 26, 5480 (2014)
- Yasmin A, Luo JJ, Daniel IM, Compos. Sci. Technol., 66, 1182 (2006)
- Zhu J, Lim J, Lee CH, Joh HI, Kim HC, Park B, You NH, Lee S, Multifunctional polyimide/graphene oxide composites via in situ polymerization, J. Appl. Polym. Sci., Doi:10.1002/APP.40177 (2014)
- Shen B, Zhai W, Tao M, Lu D, Zheng W, Compos. Sci. Technol., 86, 109 (2013)
- Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS, Carbon, 49, 3019 (2011)
- Ferrari AC, Robertson J, Phys. Rev. B, 61, 95 (2000)
- Hwang SH, Kim HJ, Sung DH, Jung YT, Kang KH, Park YB, Journal of Adhesion and Interface, 13, 137 (2012)
- Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
- Shen B, Zhai W, Tao M, Lu D, Zheng W, Compos. Sci. Technol., 77, 87 (2013)
- Kim JA, Seong DG, Kang TJ, Youn JR, Carbon, 44, 1898 (2006)
- Yeom HY, Na HY, Lee SJ, Polym.(Korea), 38(4), 502 (2014)
- Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI, Macromolecules, 37(24), 9048 (2004)