화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.1, 53-58, February, 2015
그래핀 옥사이드(GO)의 환원정도가 PC-GO 화학반응 및 물성에 미치는 영향
Effects of the Degree of GO Reduction on PC-GO Chemical Reactions and Physical Properties
E-mail:
초록
3 phr의 그래핀 옥사이드(GO)를 포함하는 폴리카보네이트(PC)/GO를 클로로포름에서 용액 혼합하여 응고물 침전한 후 240, 260, 280 ℃의 이축압출기를 이용하여 PC/GO 복합체를 제조하였다. DSC와 TGA 측정결과 PC/GO 복합체의 유리전이 온도(Tg)의 변화는 거의 없었고, 분해거동을 통해 확인한 열안정성의 경우 260 ℃ 압출시편이 우수하게 나타났다. 동적기계적분석(DMA)을 이용한 저장탄성률 측정결과 PC 대비 PC/GO 복합체의 값이 크게 나타났으며 압출온도별로는 큰 차이가 없는 것을 확인하였다. 이들 결과로부터 환원시간에 따른 PC/RGO 복합체의 압출온도를 260 ℃로 고정하였다. GO의 환원시간에 따른 PC/RGO 복합체의 화학반응 정도는 3000 cm-1 부근에서 나타나는 C-H 신축진동 피크를 통해 확인하였고, 환원시간이 1 h일 때의 GO와 유사한 화학반응 정도를 나타내었다. GO의 환원시간에 따른 PC/GO 복합체의 복소점도(complex viscosity)가 감소하는 것을 확인하였으며, 이는 PC-GO 사이의 화학반응에 의한 분산성에 기인한 것으로 주사전자현미경(SEM)을 통해 확인하였다.
Polycarbonate (PC)/graphene oxide (GO) composites with 3 phr of GO were prepared by using a twin screw extruder at 240, 260, and 280 ℃ after mixing the solution with chloroform. It was confirmed by DSC and TGA that the glass transition temperature (Tg) of PC/GO composites were not changed and the thermal stability was the best in case of the extrusion temperature at 260 ℃. Thermo mechanical properties of PC/GO composites according to extrusion temperatures were measured by dynamic mechanical analysis (DMA). Storage moduli of PC/GO composites were higher than that of pure PC and there was no detectable changes at varying the extrusion temperature. Based on these results, the extrusion temperature of PC/GO composites was fixed at 260 ℃. The degree of the chemical reaction of PC/GO composites with respect to the GO reduction time was confirmed by the C-H stretching peak at 3000 cm-1 and the degree of the chemical reaction was similar to that of GO when the reduction time was 1 h. A decrease in the complex viscosity as a function of the GO reduction time was detected by dynamic rheometer, which may be originated from the enhancement of GO dispersion by PC-GO reaction. The GO dispersion was confirmed by scanning electron microscope (SEM).
  1. Lee BY, Dahal P, Kim HS, Yoo SY, Kim YC, Appl. Chem. Eng., 23(4), 388 (2012)
  2. Choi SJ, Yoon KH, Hwang IH, Lee CY, Kim HS, Yoo SY, Kim YC, Appl. Chem. Eng., 21(5), 532 (2010)
  3. Kim HJ, Um GJ, Journal of Korea TAPPI, 38, 68 (2006)
  4. Kim CO, Kim JW, Journal of Natural Sciencesm, 19, 67 (2000)
  5. Moon HG, Chang JH, Polym.(Korea), 35(3), 265 (2011)
  6. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22(35), 3906 (2010)
  7. Han JT, Jeong SY, Jeong HJ, Lee GW, Korean Ind. Chem. News, 15(1), 23 (2012)
  8. Park S, Korean Ind. Chem. News, 16(3), 1 (2013)
  9. Fang M, Wang K, Lu H, Yang Y, Nutt S, J. Mater. Chem., 19, 7098 (2009)
  10. Kim H, Kobayashi S, AbdurRahim MA, Zhang MLJ, Khusainova A, Hillmyer MA, Abdala AA, Macosko CW, Polymer, 52(8), 1837 (2011)
  11. Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B, Tang B, Chan M, Kim JK, Adv. Mater., 26, 5480 (2014)
  12. Yasmin A, Luo JJ, Daniel IM, Compos. Sci. Technol., 66, 1182 (2006)
  13. Zhu J, Lim J, Lee CH, Joh HI, Kim HC, Park B, You NH, Lee S, Multifunctional polyimide/graphene oxide composites via in situ polymerization, J. Appl. Polym. Sci., Doi:10.1002/APP.40177 (2014)
  14. Shen B, Zhai W, Tao M, Lu D, Zheng W, Compos. Sci. Technol., 86, 109 (2013)
  15. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS, Carbon, 49, 3019 (2011)
  16. Ferrari AC, Robertson J, Phys. Rev. B, 61, 95 (2000)
  17. Hwang SH, Kim HJ, Sung DH, Jung YT, Kang KH, Park YB, Journal of Adhesion and Interface, 13, 137 (2012)
  18. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
  19. Shen B, Zhai W, Tao M, Lu D, Zheng W, Compos. Sci. Technol., 77, 87 (2013)
  20. Kim JA, Seong DG, Kang TJ, Youn JR, Carbon, 44, 1898 (2006)
  21. Yeom HY, Na HY, Lee SJ, Polym.(Korea), 38(4), 502 (2014)
  22. Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI, Macromolecules, 37(24), 9048 (2004)