Applied Chemistry for Engineering, Vol.26, No.1, 80-85, February, 2015
리튬이온배터리 음극활물질 Silicon/Carbon 복합소재의 전기화학적 특성
Electrochemical Characteristics of Silicon/Carbon Composites for Anode Materials of Lithium Ion Batteries
E-mail:
초록
본 연구에서는 리튬이차전지의 음극활물질인 실리콘/탄소 복합소재를 제조하여 전기화학적 특성을 확인하였다. 실리콘/탄소 합성물은 마그네슘의 열 환원 반응을 통해 SBA-15 (Santa Barbara Amorphous material No. 15)를 제조한 후 페놀 수지의 탄화 과정을 통해 합성하였다. 실리콘/탄소를 음극으로 제조하여 충방전, 사이클, 순환전압전류, 임피던스 테스트를 통해 분석하였다. 실리콘에 코팅된 탄소는 전기 전도도를 향상시켜 Rct값을 235 ohm (silicon)에서 30 ohm (실리콘/탄소)으로 낮추었고 리튬의 탈.삽입 시에 발생하는 실리콘의 팽창을 억제하여 전극을 안정화시키는 효과를 보여주었다. 실리콘/탄소 전극을 사용한 리튬이차전지는 1,348 mAh/g의 용량을 나타내었고 50사이클 동안 76%의 안정성을 보여주었다.
Silicon/carbon composites as anode materials for lithium-ion batteries were examined to find the cycle performance and capacity. Silicon/carbon composites were prepared by a two-step method, including the magnesiothermic reduction of SBA-15 (Santa Barbara Amorphous material No. 15) and carbonization of phenol resin. The electrochemical behaviors of lithium ion batteries were characterized by charge/discharge, cycle, cyclic voltammetry and impedance tests. The improved electrochemical performance attributed to the fact that silicon/carbon composites suppress the volume expansion of the silicon particles and enhance the conductivity of silicon/carbon composites (30 ohm) compared to that of using the pure silicon (235 ohm). The
anode electrode of silicon/carbon composites showed the high capacity approaching 1,348 mAh/g and the capacity retention ratio of 76% after 50 cycles.
- Hwa Y, Park CM, Sohn HJ, J. Power Sources, 222, 129 (2013)
- Wang J, Zhao HL, He JC, Wang CM, Wang J, J. Power Sources, 196(10), 4811 (2011)
- Yang Y, Peng WJ, Guo HJ, Wang ZX, Li XH, Zhou YY, Liu YJ, Trans. Nonferrous Met. Soc. China, 17, 1339 (2007)
- Zhang T, Gao J, Zhang HP, Yang LC, Wu YP, Wu HQ, Electrochem. Commun., 9, 886 (2007)
- Moon SH, Jin WJ, Kim TR, Hahm HS, Cho BW, Kim MS, J. Ind. Eng. Chem., 11(4), 594 (2005)
- Zhang M, Hou X, Wang J, Li M, Liu X, J. Alloys Compd., 13 (2013)
- Hwa Y, Kim WS, Yu BC, Kim JH, Hong SH, Sohn HJ, J. Power Sources, 252, 144 (2014)
- Wang GX, Ahn JH, Yao J, Bewlay S, Liu HK, Electrochem. Commun., 6, 689 (2004)
- Du C, Chen M, Wang L, Yin G, J. Mater. Chem, 21, 15692 (2011)
- Tao HC, Fan LZ, Qu XH, Electrochim. Acta, 71, 194 (2012)
- Thakur M, Isaacson M, Sinsabaugh SL, Wong MS, Biswal SL, J. Power Sources, 205, 426 (2012)
- Zhou XY, Tang JJ, Yang J, Xie J, Ma LL, Electrochim. Acta, 87, 663 (2013)
- Hong I, Scrosati B, Croce F, Solid State Ion., 232, 24 (2013)
- Guo M, Zou X, Ren H, Muhammad F, Huang C, Qiu S, Zhu G, Microporous Mesoporous Mater., 142(1), 194 (2011)
- Kaspar J, Graczyk-Zajac M, Lauterbach S, Kleebe H, Riedel R, J. Power Sources, 269, 164 (2014)
- Su MR, Wang ZX, Guo HJ, Li XH, Huang SL, Gan L, Xiao W, Powder Technol., 249, 105 (2013)
- Wang MS, Fan LZ, J. Power Sources, 244, 570 (2013)
- Wang MS, Fan LZ, Huang MA, Li JH, Qu XH, J. Power Sources, 219, 29 (2012)
- Wang S, Matsumura Y, Maeda T, Synthetic Met., 71, 1759 (1995)