화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.1, 80-85, February, 2015
리튬이온배터리 음극활물질 Silicon/Carbon 복합소재의 전기화학적 특성
Electrochemical Characteristics of Silicon/Carbon Composites for Anode Materials of Lithium Ion Batteries
E-mail:
초록
본 연구에서는 리튬이차전지의 음극활물질인 실리콘/탄소 복합소재를 제조하여 전기화학적 특성을 확인하였다. 실리콘/탄소 합성물은 마그네슘의 열 환원 반응을 통해 SBA-15 (Santa Barbara Amorphous material No. 15)를 제조한 후 페놀 수지의 탄화 과정을 통해 합성하였다. 실리콘/탄소를 음극으로 제조하여 충방전, 사이클, 순환전압전류, 임피던스 테스트를 통해 분석하였다. 실리콘에 코팅된 탄소는 전기 전도도를 향상시켜 Rct값을 235 ohm (silicon)에서 30 ohm (실리콘/탄소)으로 낮추었고 리튬의 탈.삽입 시에 발생하는 실리콘의 팽창을 억제하여 전극을 안정화시키는 효과를 보여주었다. 실리콘/탄소 전극을 사용한 리튬이차전지는 1,348 mAh/g의 용량을 나타내었고 50사이클 동안 76%의 안정성을 보여주었다.
Silicon/carbon composites as anode materials for lithium-ion batteries were examined to find the cycle performance and capacity. Silicon/carbon composites were prepared by a two-step method, including the magnesiothermic reduction of SBA-15 (Santa Barbara Amorphous material No. 15) and carbonization of phenol resin. The electrochemical behaviors of lithium ion batteries were characterized by charge/discharge, cycle, cyclic voltammetry and impedance tests. The improved electrochemical performance attributed to the fact that silicon/carbon composites suppress the volume expansion of the silicon particles and enhance the conductivity of silicon/carbon composites (30 ohm) compared to that of using the pure silicon (235 ohm). The anode electrode of silicon/carbon composites showed the high capacity approaching 1,348 mAh/g and the capacity retention ratio of 76% after 50 cycles.
  1. Hwa Y, Park CM, Sohn HJ, J. Power Sources, 222, 129 (2013)
  2. Wang J, Zhao HL, He JC, Wang CM, Wang J, J. Power Sources, 196(10), 4811 (2011)
  3. Yang Y, Peng WJ, Guo HJ, Wang ZX, Li XH, Zhou YY, Liu YJ, Trans. Nonferrous Met. Soc. China, 17, 1339 (2007)
  4. Zhang T, Gao J, Zhang HP, Yang LC, Wu YP, Wu HQ, Electrochem. Commun., 9, 886 (2007)
  5. Moon SH, Jin WJ, Kim TR, Hahm HS, Cho BW, Kim MS, J. Ind. Eng. Chem., 11(4), 594 (2005)
  6. Zhang M, Hou X, Wang J, Li M, Liu X, J. Alloys Compd., 13 (2013)
  7. Hwa Y, Kim WS, Yu BC, Kim JH, Hong SH, Sohn HJ, J. Power Sources, 252, 144 (2014)
  8. Wang GX, Ahn JH, Yao J, Bewlay S, Liu HK, Electrochem. Commun., 6, 689 (2004)
  9. Du C, Chen M, Wang L, Yin G, J. Mater. Chem, 21, 15692 (2011)
  10. Tao HC, Fan LZ, Qu XH, Electrochim. Acta, 71, 194 (2012)
  11. Thakur M, Isaacson M, Sinsabaugh SL, Wong MS, Biswal SL, J. Power Sources, 205, 426 (2012)
  12. Zhou XY, Tang JJ, Yang J, Xie J, Ma LL, Electrochim. Acta, 87, 663 (2013)
  13. Hong I, Scrosati B, Croce F, Solid State Ion., 232, 24 (2013)
  14. Guo M, Zou X, Ren H, Muhammad F, Huang C, Qiu S, Zhu G, Microporous Mesoporous Mater., 142(1), 194 (2011)
  15. Kaspar J, Graczyk-Zajac M, Lauterbach S, Kleebe H, Riedel R, J. Power Sources, 269, 164 (2014)
  16. Su MR, Wang ZX, Guo HJ, Li XH, Huang SL, Gan L, Xiao W, Powder Technol., 249, 105 (2013)
  17. Wang MS, Fan LZ, J. Power Sources, 244, 570 (2013)
  18. Wang MS, Fan LZ, Huang MA, Li JH, Qu XH, J. Power Sources, 219, 29 (2012)
  19. Wang S, Matsumura Y, Maeda T, Synthetic Met., 71, 1759 (1995)