Korean Journal of Chemical Engineering, Vol.32, No.3, 494-500, March, 2015
Molecular dynamics simulation of carbon molecular sieve preparation for air separation
E-mail:
Carbon deposition process on activated carbon (AC) in order to produce carbon molecular sieve (CMS) was simulated using molecular dynamics simulation. The proposed activated carbon for simulation includes micropores with different characteristic diameters and lengths. Three different temperatures of 773 K, 973 K, and 1,273 K were selected to investigate the optimum deposition temperature. Simulation results show that the carbon deposition process at 973 K creates the best adsorbent structure. While at lower temperature some micropore openings are blocked with carbon atoms, at higher temperature the number of deposited carbons on the micropores does not change significantly. Also, carbon deposition process confirms the pseudo-second-order kinetic model with an endothermic behavior. To evaluate the sieving property of adsorbent products, nitrogen and oxygen adsorption on the initial and final adsorbent products are examined. Results show that there is not any considerable difference between the equilibrium
adsorption amounts of nitrogen and oxygen on the initial and final adsorbents especially at low pressure (P<10 atm). Although, adsorption kinetics curves of these gases change significantly after the carbon deposition process in comparison with the initial sample. These observations indicate that the final adsorbent has high selectivity towards oxygen compared with the nitrogen, so it can be called a carbon molecular sieve. All simulated results are in good agreement
with experiments.
Keywords:Carbon Molecular Sieve;Molecular Dynamics Simulation;Carbon Deposition;Adsorption Kinetics;Air Separation
- Castilla CM, Carbon, 42, 83 (2004)
- Demirbas A, J. Hazard. Mater., 167(1-3), 1 (2009)
- Valente Nabais JM, Carrott PJM, Ribeiro Carrott MML, Padre-Eterno AM, Menendez JA, Dominguez A, Ortiz AL, Carbon, 44, 1158 (2006)
- Adinata D, Daud WMAW, Aroua MK, Fuel Process. Technol., 88(6), 599 (2007)
- Wang LP, Huang ZC, Zhang MY, T. Nonferr. Metal. Soc., 23, 530 (2013)
- Kim BK, Kim YH, Yamamoto T, Korean J. Chem. Eng., 25(5), 1140 (2008)
- Rungta M, Zhang C, Koros WJ, Xu LR, AIChE J., 59(9), 3475 (2013)
- Rungta M, Xu L, Koros WJ, Carbon, 50, 1488 (2012)
- Jarvelin H, Fair JR, Ind. Eng. Chem. Res., 32, 2201 (1993)
- Grande CA, Silva VMTM, Gigola C, Rodrigues AE, Carbon, 41, 2533 (2003)
- Tseng HH, Itta AK, J. Membr. Sci., 389, 223 (2012)
- Itta AK, Tseng HH, Int. J. Hydrog. Energy, 36(14), 8645 (2011)
- Mohamed AR, Mohammadi M, Darzi GN, Renew. Sust. Energy Rev., 14, 1591 (2010)
- Moreira RFPM, Jose HJ, Rodrigues AE, Carbon, 39, 2269 (2001)
- Reid CR, O'koye IP, Thomas KM, Langmuir, 14(9), 2415 (1998)
- Mohammadi M, Najafpour GD, Mohamed AR, Chem. Ind. Chem. Eng. Q, 17, 525 (2011)
- Prasetyo I, Do DD, Carbon, 37, 1909 (1999)
- Kiyono M, Williams PJ, Koros WJ, J. Membr. Sci., 359(1-2), 2 (2010)
- Do DD, Do HD, Colloids Surf., A, 252, 7 (2005)
- Herrera LF, Do DD, Birkett GR, J. Colloid Interface Sci., 320(2), 415 (2008)
- Okayama T, Yoneya J, Nitta T, Fluid Phase Equilib., 104, 305 (1995)
- Georgakis M, Stavropoulos G, Sakellaropoulos GP, Micropor. Mesopor. Mater., 191, 67 (2014)
- Liu YY, Wilcox J, Int. J. Coal Geol., 104, 83 (2012)
- Fan C, Do DD, Nicholson D, Jagiello J, Kenvin J, Puzan M, Carbon, 52, 158 (2013)
- Nasrabadi AT, Foroutan M, Comp. Mater. Sci., 61, 134 (2012)
- Shi Y, J. Chem. Phys., 128 (2008)
- Palmer JC, Llobet A, Yeon SH, Fischer JE, Shi Y, Gogotsi Y, Gubbins KE, Carbon, 48, 1116 (2010)
- Palmer JC, Brennan JK, Hurley MM, Balboa A, Gubbins KE, Carbon, 47, 2904 (2009)
- Fan LT, Argoti A, Walawender WP, Chou ST, Ind. Eng. Chem. Res., 44(7), 2343 (2005)
- Ahmadpour A, Mahdyarfar M, Rashidi A, Abedinzadegan Abdi M, Eng. Fac. J-FUM, 18 (2007)
- MacElroy JMD, Boyle MJ, Chem. Eng. J., 74(1-2), 85 (1999)
- Wu ZQ, Liu ZP, Wang WC, Fan YQ, Xu NP, Chin. J. Chem. Eng., 16(5), 709 (2008)
- Gauden PA, Terzyk AP, furmaniak S, Wloch J, Kowalczyk P, Zielinski W, J. Phys. Condens Matter, 26, 1 (2014)
- Vela S, Larranaga FH, Carbon, 49, 4544 (2011)
- Foroutann M, Nasrabadi AT, Physica E, 43, 261 (2010)
- Hunenberger PH, Adv. Polym. Sci., 173, 105 (2005)
- Hess B, Kutzner C, van der Spoel D, Lindahl E, J. Chem. Theory Comput., 4, 435 (2008)
- Humphrey W, Dalke A, Schulten K, J. Mol. Graphics, 14, 33 (1996)
- Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF, J. Phys. Chem. A, 103(19), 3596 (1999)
- van Gunsteren WF, Berendsen HJC, Angew. Chem. Int. Ed. Engl., 29, 992 (1990)
- Cai Q, Biggs MJ, Seaton NA, Phys. Chem. Chem. Phys., 10, 2519 (2008)
- Xu L, Sedigh G, Sahimi M, Tsotsis TT, Phys. Rev. Lett., 80, 3511 (1998)
- Lagergren S, Kung Seven Veten Hand, 24, 1 (1898)
- Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
- Vinodh R, Padmavathi R, Sangeetha D, Desalination, 267(2-3), 267 (2011)
- Freundlich HMF, J. Phys. Chem., 57, 385 (1906)
- Yang RT, Adsorbents fundamentals and application, Wiley, New Jersey (2003)