화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.16, No.1, 1-4, January, 2006
마이크로파에 의한 생분해성 β-TCP/PLGA 복합체의 제조시 β-TCP 첨가량에 따른 영향
The Influence of β-TCP Content on the Preparation of Biodegradable β-TCP/PLGA Composites Using Microwave Energy
E-mail:
Biodegradable [Math Processing Error] -tricalcium phosphate ( [Math Processing Error] -TCP)/poly(lactide-co-glycolide) (PLGA) composites were synthesized by in-situ polymerization with microwave energy. The influence of the [Math Processing Error] -TCP content in [Math Processing Error] -TCP/PLGA composites on the molecular weight, crystallinity, microstructure and mechanical properties was investigated. As the molecular weight of composites decreased, the [Math Processing Error] -TCP content increased up to 10 wt.%, while the excess addition of the [Math Processing Error] -TCP content above 10 wt.% the molecular weight increased with increasing of the [Math Processing Error] -TCP content. This behavior would be due to the superheating effect or nonthermal effect induced by microwave energy. It was found that the bending strength and Young's modulus of the [Math Processing Error] -TCP/PLGA composites was proportional to the molecular weight of PLGA. The bending strength of the [Math Processing Error] -TCP/PLGA composites ranged from 18 to 38 MPa, while Young's modulus was in the range from 2 to 6 GPa.
  1. Jining Q, Han JH, Guoding Z, Lee JC, Scripta Materialia, 51, 185 (2004)
  2. Akhmadeev NA, Kobelev NP, Mulyukov RR, Soifer M, Valiev RZ, Acta Metall. et Mater., 41, 1041 (1993)
  3. Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ, Mater. Sci. Eng. A, 299, 59 (2001)
  4. Owen D, Chokshi AH, Ma Y, Langdon TG, Brit. Ceram. Proc., 51, 61 (1993)
  5. Nagahama H, Ohtera K, Higashi K, Inoue A, Masumoto T, Philos. Mag. Lett., 67, 225 (1993)
  6. Shin DH, Oh KH, Kim WJ, Lee SW, Choo WY, J. Kor. Inst. Met. & Mater., 37, 1048 (1999)
  7. Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI, Russian Metall., 1, 99 (1981)
  8. Komura S, Horita Z, Nemoto M, Langdon TG, Journal of Materials Research, 14, 4044 (1999)
  9. Segal VM, Mater. Sci. Eng. A, 197, 157 (1995)
  10. Hong MH, Kim HS, Hong SI, J. Kor. Inst. Met. & Mater., 38, 136 (2000)
  11. Valiev RZ, Mater. Sci. Eng. A, 234, 59 (1997)
  12. Wu Y, Baker I, Scripta Met. Mater., 37, 437 (1997)
  13. Pavlov VA, Phys. Metal. Metall., 67, 924 (1989)
  14. Valiev RZ, Kozlov EV, Ivanov YF, Lian J, Nazarov AA, Baudelet B, Acta Metall. et Mater., 42, 2467 (1994)
  15. Ringer SP, Hono K, Polmear IJ, Sakurai T, Applied Surface Science, 94-95, 253 (1996)
  16. Horita Z, Fujinami T, Nemoto M, Langdon TG, Journal of Materials Processing Technology, 117, 288 (2001)
  17. Kannan K, Vetrano JS, Hamilton CH, Metall. Trans. A, 27, 2947 (1996)
  18. Lee JG, Seo CW, Chang SY, Park KT, Shin DH, J. Kor. Inst. Met. & Mater., 39, 158 (2001)
  19. Kang HK, Bachelard L, Kim HW, Kang SB, J. Kor. Inst. Met. & Mater., 39(5), 553 (2001)
  20. Patlan V, Higashi K, Kitagawa K, Vinogradov A, Kawazoe M, Mater. Sci. Eng. A, 319, 589 (2001)
  21. Iwahashi Y, Horita Z, Nemoto M, Langdon TG, Acta Materialia, 45(11), 4733 (1997)
  22. Wang YY, Sun RL, Kao PW, Chang CP, Scripta Materialia, 50(5), 613 (2004)
  23. Yoon KB, Park TG, Shim SH, Jeong IS, Transactions of the KSME A, 25(9), 1493 (2001)
  24. Fluery E, Ha JS, International Journal of Pressure Vessels and Piping, 75, 699 (1998)
  25. Ratchev P, Verlinden B, De Smet P, Van Houtte P, Acta Mater., 46(10), 3523 (1998)
  26. Starink MJ, Gregson PJ, Mater. Sci. Eng. A, 211, 54 (1996)