- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.16, No.1, 1-4, January, 2006
마이크로파에 의한 생분해성 β-TCP/PLGA 복합체의 제조시 β-TCP 첨가량에 따른 영향
The Influence of β-TCP Content on the Preparation of Biodegradable β-TCP/PLGA Composites Using Microwave Energy
E-mail:
Biodegradable [Math Processing Error] -tricalcium phosphate ( [Math Processing Error] -TCP)/poly(lactide-co-glycolide) (PLGA) composites were synthesized by in-situ polymerization with microwave energy. The influence of the [Math Processing Error] -TCP content in [Math Processing Error] -TCP/PLGA composites on the molecular weight, crystallinity, microstructure and mechanical properties was investigated. As the molecular weight of composites decreased, the [Math Processing Error] -TCP content increased up to 10 wt.%, while the excess addition of the [Math Processing Error] -TCP content above 10 wt.% the molecular weight increased with increasing of the [Math Processing Error] -TCP content. This behavior would be due to the superheating effect or nonthermal effect induced by microwave energy. It was found that the bending strength and Young's modulus of the [Math Processing Error] -TCP/PLGA composites was proportional to the molecular weight of PLGA. The bending strength of the [Math Processing Error] -TCP/PLGA composites ranged from 18 to 38 MPa, while Young's modulus was in the range from 2 to 6 GPa.
Keywords:[Math Processing Error]-TCP/PLGA;composites;microwave;biodegradation;in-situ polymerization
- Jining Q, Han JH, Guoding Z, Lee JC, Scripta Materialia, 51, 185 (2004)
- Akhmadeev NA, Kobelev NP, Mulyukov RR, Soifer M, Valiev RZ, Acta Metall. et Mater., 41, 1041 (1993)
- Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ, Mater. Sci. Eng. A, 299, 59 (2001)
- Owen D, Chokshi AH, Ma Y, Langdon TG, Brit. Ceram. Proc., 51, 61 (1993)
- Nagahama H, Ohtera K, Higashi K, Inoue A, Masumoto T, Philos. Mag. Lett., 67, 225 (1993)
- Shin DH, Oh KH, Kim WJ, Lee SW, Choo WY, J. Kor. Inst. Met. & Mater., 37, 1048 (1999)
- Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI, Russian Metall., 1, 99 (1981)
- Komura S, Horita Z, Nemoto M, Langdon TG, Journal of Materials Research, 14, 4044 (1999)
- Segal VM, Mater. Sci. Eng. A, 197, 157 (1995)
- Hong MH, Kim HS, Hong SI, J. Kor. Inst. Met. & Mater., 38, 136 (2000)
- Valiev RZ, Mater. Sci. Eng. A, 234, 59 (1997)
- Wu Y, Baker I, Scripta Met. Mater., 37, 437 (1997)
- Pavlov VA, Phys. Metal. Metall., 67, 924 (1989)
- Valiev RZ, Kozlov EV, Ivanov YF, Lian J, Nazarov AA, Baudelet B, Acta Metall. et Mater., 42, 2467 (1994)
- Ringer SP, Hono K, Polmear IJ, Sakurai T, Applied Surface Science, 94-95, 253 (1996)
- Horita Z, Fujinami T, Nemoto M, Langdon TG, Journal of Materials Processing Technology, 117, 288 (2001)
- Kannan K, Vetrano JS, Hamilton CH, Metall. Trans. A, 27, 2947 (1996)
- Lee JG, Seo CW, Chang SY, Park KT, Shin DH, J. Kor. Inst. Met. & Mater., 39, 158 (2001)
- Kang HK, Bachelard L, Kim HW, Kang SB, J. Kor. Inst. Met. & Mater., 39(5), 553 (2001)
- Patlan V, Higashi K, Kitagawa K, Vinogradov A, Kawazoe M, Mater. Sci. Eng. A, 319, 589 (2001)
- Iwahashi Y, Horita Z, Nemoto M, Langdon TG, Acta Materialia, 45(11), 4733 (1997)
- Wang YY, Sun RL, Kao PW, Chang CP, Scripta Materialia, 50(5), 613 (2004)
- Yoon KB, Park TG, Shim SH, Jeong IS, Transactions of the KSME A, 25(9), 1493 (2001)
- Fluery E, Ha JS, International Journal of Pressure Vessels and Piping, 75, 699 (1998)
- Ratchev P, Verlinden B, De Smet P, Van Houtte P, Acta Mater., 46(10), 3523 (1998)
- Starink MJ, Gregson PJ, Mater. Sci. Eng. A, 211, 54 (1996)