화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.21, 70-80, January, 2015
Methods for enhancing bio-hydrogen production from biological process: A review
E-mail:,
Hydrogen (H2) is considered a clean source of energy and an ideal substitute for fossil fuel owing to its high energy content (122 kJ/g), recyclability and non-polluting nature. The conventional physicochemical methods for hydrogen production are costly owing to high energy input requirements. Hydrogen production by means of biological processes is considered the most environmental friendly and relatively easy to operate, with successful operation under ambient conditions and promising techniques, and having significant advantages compared with conventional chemical processes. The major bottlenecks in biological processes are the low hydrogen yield and production rates at a large scale. The target is improvement of the biological method for hydrogen production and devising path even better in comparison to the conventional methods. The present review article aims to highlight various techniques such as pretreatment, cell immobilization, sequential fermentation, combined fermentation that have been used in biological processes for enhancing hydrogen production. Future developments on these techniques are also outlined.
  1. Dutta S, J. Ind. Eng. Chem., 20(4), 1148 (2014)
  2. Singh L, Siddiqui MF, Ahmad A, Rahim MHA, Sakinah M, Wahid ZA, Biochem. Eng. J., 70, 158 (2013)
  3. Singh L, Wahid ZA, Siddiqui MF, Ahmad A, Rahim MHA, Sakinah M, Process Biochem., 48, 294 (2013)
  4. Kapdan IK, Kargi F, Enzyme Microb. Technol., 38, 271 (2006)
  5. Kalinci Y, Hepbasli A, Dincer I, Int. J. Hydrog. Energy, 34(21), 8799 (2009)
  6. Sinha P, Pandey A, Int. J. Hydrog. Energy, 36(13), 7460 (2011)
  7. Wang JL, Wan W, Int. J. Hydrog. Energy, 34(2), 799 (2009)
  8. Sigal A, Leiva EPM, Rodriguez CR, Int. J. Hydrog. Energy, 39(16), 8204 (2014)
  9. Phowan P, Danuirutai P, Biomass Bioenerg., 64, 1 (2014)
  10. Tanisho S, Wakao N, Kokako Y, J. Chem. Eng., 16, 529 (1983)
  11. Fedorov AS, Tsygankov AA, Rao KK, Hall DO, Biotechnol. Lett., 20(11), 1007 (1998)
  12. Tsygankov AA, Fedorov AS, Laurinavichene TV, Gogotov IN, Rao KK, Hall DO, Appl. Microbiol. Biotechnol., 49(1), 102 (1998)
  13. Chang JS, Lee KS, Lin PJ, Int. J. Hydrog. Energy, 27(11-12), 1167 (2002)
  14. Wonga YM, Wu TY, Juan JC, Renew. Sust. Energ. Rev., 34, 471 (2014)
  15. Lee KS, Lo YS, Lo YC, Lin PJ, Chang JS, Biotechnol. Lett., 25(2), 133 (2003)
  16. Levin DB, Pitt L, Love M, Int. J. Hydrog. Energy, 29(2), 173 (2004)
  17. Nath K, Das D, Appl. Microbiol. Biotechnol., 65(5), 520 (2004)
  18. Kotay SM, Das D, Int. J. Hydrog. Energy, 33(1), 258 (2008)
  19. Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domiguez-Espinosa R, Trends Biotechnol., 22, 477 (2004)
  20. Benemann JR, Nat. Biotechnol., 14, 1101 (1996)
  21. Logan BE, Environ. Sci. Technol., 38, 160 (2004)
  22. Lin Y, Liang J, Wu S, Wang B, J. Ind. Eng. Chem., 19(1), 316 (2013)
  23. Huang YH, Huang GH, Chou S, Cheng S, Water Sci. Technol., 42, 43 (2000)
  24. Kidby DW, Nedwell DB, Water Res., 25, 1007 (1991)
  25. Voolapalli RK, Stuckey D, Water Res., 35, 1831 (2001)
  26. Mohan SV, J. Sci. Ind. Res., 67, 950 (2008)
  27. Wang YY, Ai P, Hu CX, Zhang YL, Int. J. Hydrog. Energy, 36(1), 390 (2011)
  28. Kawagoshi Y, Hino N, Fujimoto A, Nakao M, Fujita Y, Sugimura S, Furukawa K, J. Biosci. Bioeng., 100(5), 524 (2005)
  29. Li D, Yuan ZH, Sun YM, Ma LL, Int. J. Hydrog. Energy, 35(15), 8234 (2010)
  30. Mu Y, Yu HQ, Wang G, Enzyme Microb. Technol., 40(4), 947 (2007)
  31. Rossi DM, da Costa JB, de Souza EA, Peralba MDR, Samios D, Ayub MAZ, Int. J. Hydrog. Energy, 36(8), 4814 (2011)
  32. Madigan MT, Martinko JM, Parker J, Brock biology of microorganisms, 9th ed., Prentice Hall, Upper Saddle River, NJ, 2000.
  33. O-Thong S, Prasertsan P, Birkeland NK, Bioresour. Technol., 100(2), 909 (2009)
  34. Cheong DY, Hansen CL, Appl. Microbiol. Biotechnol., 72(4), 635 (2006)
  35. Kim SH, Shin HS, Int. J. Hydrog. Energy, 33(19), 5266 (2008)
  36. Zhu HG, Beland M, Int. J. Hydrog. Energy, 31(14), 1980 (2006)
  37. Mohan SV, Babu VL, Sarma PN, Bioresour. Technol., 99(1), 59 (2008)
  38. Cai M, Liu J, Wei Y, Environ. Sci. Technol., 38, 3195 (2004)
  39. Ren NQ, Guo WQ, Wang XJ, Xiang WS, Liu BF, Wang XZ, Ding J, Chen ZB, Int. J. Hydrog. Energy, 33(16), 4318 (2008)
  40. Guo L, Li XM, Bo X, Yang Q, Zeng GM, Liao DX, Liu JJ, Bioresour. Technol., 99(9), 3651 (2008)
  41. Singh L, Siddiqui MF, Ahmad A, Ab. Rahim MH, Sakinah M, Sakinah ZA, J. Ind. Eng. Chem., 19(2), 659 (2013)
  42. Ismail I, Hassan MA, Rahman NAA, Soon CS, Afr. J. Biotechnol., 10, 601 (2011)
  43. Patel SKS, Purohit HJ, Kalia VC, Int. J. Hydrog. Energy, 35(19), 10674 (2010)
  44. Kumar N, Das D, Int. J. Hydrog. Energy, 26(11), 1155 (2001)
  45. Jo JH, Lee DS, Park D, Park JM, Bioresour. Technol., 99(14), 6666 (2008)
  46. Wu SY, Lin CN, Chang JS, Chang JS, Int. J. Hydrog. Energy, 30(13-14), 1375 (2005)
  47. Wu KJ, Chang JS, Process Biochem., 42, 279 (2007)
  48. Park JK, Chang HN, Biotechnol. Adv., 18, 303 (2000)
  49. Wu KJ, Chang JS, Chang CF, J. Chin. Inst. Chem. Eng., 37(6), 545 (2006)
  50. Zhao L, Cao GL, Wang AJ, Guo WQ, Liu BF, Ren HY, Ren NQ, Ma F, Int. J. Hydrog. Energy, 37(1), 162 (2012)