화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.21, 261-268, January, 2015
Modeling of full-scale reverse osmosis desalination system: Influence of operational parameters
E-mail:
Reverse osmosis (RO) has proven to be an efficient technique for desalination of seawater, brackish water, and reclaimed wastewater. However, the performance of RO desalination is sensitive to its design parameters and operating conditions. In this study, a design method based on a simulation technique has been developed for optimizing two pass RO desalination systems. A dynamic model based on RO membrane transport incorporating concentration polarization and mass balance equations was developed and used to estimate the performance of RO system. Various objective functions were considered, including maximization of permeate throughput (overall recovery), minimization of energy consumption, and minimization of boron concentration in permeate. The simulation was carried out under a wide range of operation conditions. Results concerning the performance and economics of the process were also presented.
  1. Penate B, Garcia-Rodriguez L, Desalination, 284, 1 (2012)
  2. Hyung H, Kim JH, J. Membr. Sci., 286(1-2), 269 (2006)
  3. Sachit DE, Veenstra JN, J. Membr. Sci., 453, 136 (2014)
  4. Park PK, Lee S, Cho JS, Kim JH, Water Res., 46(12), 3796 (2012)
  5. Wilf M, Bartels C, Desalination, 173(1), 1 (2005)
  6. Avlonitis SA, Kouroumbas K, Vlachakis N, Desalination, 157(1-3), 151 (2003)
  7. Zheng X, Chen D, Wang Q, Zhang ZX, Chem. Eng. J., 242, 404 (2014)
  8. Voutchkov N, Filtr. Sep., 47(6), 36 (2010)
  9. Lattemann S, Hopner T, Desalination, 220(1-3), 1 (2008)
  10. Lee S, Lueptow RM, Life Sci., 7(3), 151 (2001)
  11. Lee S, Lueptow RM, J. Membr. Sci., 182(1-2), 77 (2001)
  12. Nam JW, Park JY, Kim JH, Kwon S, Chon K, Lee EJ, Kim HS, Jang A, J. Ind. Eng. Chem.
  13. Kezia K, Lee J, Hill AJ, Kentish SE, J. Membr. Sci., 445, 160 (2013)
  14. Ahn CH, Baek Y, Lee C, Kim SO, Kim S, Lee S, Kim SH, Bae SS, Park J, Yoon J, J. Ind. Eng. Chem., 18(5), 1551 (2012)
  15. Zhao L, Ho WSW, J. Membr. Sci., 455, 44 (2014)
  16. Xie P, Murdoch LC, Ladner DA, J. Membr. Sci., 453, 92 (2014)
  17. Ordonez R, Moral A, Hermosilla D, Blanco A, J. Ind. Eng. Chem., 18(3), 926 (2012)
  18. Gagnaire J, Chapon L, Moulin P, Marrot B, J. Ind. Eng. Chem., 18(4), 1522 (2012)
  19. Kim DH, Shon HK, Sharma G, Cho J, J. Ind. Eng. Chem., 17(1), 109 (2011)
  20. Abbas A, Al-Bastaki N, Chem. Eng. J., 114(1-3), 139 (2005)
  21. Van Gauwbergen D, Baeyens J, Desalination, 139(1-3), 275 (2001)
  22. Avlonitis SA, Pappas M, Moutesidis K, Desalination, 203(1-3), 218 (2007)
  23. Marcovecchio MG, Aguirre PA, Scenna NJ, Desalination, 184(1-3), 259 (2005)
  24. Stover RL, Desalination, 221(1-3), 126 (2008)
  25. Du YW, Xie LX, Liu J, Wang YX, Xu YJ, Wang SC, Desalination, 333(1), 66 (2014)
  26. Oh HJ, Hwang TM, Lee S, Desalination, 238(1-3), 128 (2009)
  27. Choi BB, Choi YJ, Choi JS, Lee S, Oh HJ, Desalination, 247(1-3), 233 (2009)
  28. Lee S, Lueptow RM, Environ. Sci. Technol., 35(14), 3008 (2001)
  29. Cheryan M, Ultrafiltration and Microfiltration Handbook, Technomic Publishing Company Inc., Lancaster, PA, 1998.
  30. Nicolas S, Balannec B, Beline F, Bariou B, J. Membr. Sci., 164(1-2), 141 (2000)
  31. Lee S, Kim J, Lee CH, J. Membr. Sci., 163(1), 63 (1999)
  32. Zeman LJ, Zydney AL, Microfiltration and Ultrafiltration: Principles and Applications, Marcel Dekker Inc., New York, 1996.
  33. Kim S, Hoek EMV, Desalination, 186(1-3), 111 (2005)
  34. Seeton CJ, Tribol. Lett., 22(1), 67 (2006)
  35. Hyung H, Kim JH, J. Membr. Sci., 286(1-2), 269 (2006)