화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.21, 1089-1097, January, 2015
Calcium molybdate octahedral nanostructures, hierarchical self-assemblies controllable synthesis by coprecipitation method: Characterization and optical properties
E-mail:
Calcium molybdate nanostructures have been successfully prepared via coprecipitation approach by utilizing Ca(Sal)2 (Sal = salicylidene) and ammonium heptamolybdate ((NH4)6Mo7O24·4H2O) as starting materials in water as solvent. The products were characterized by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD), energy dispersive X-ray microanalysis (EDX), photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of temperature, reaction time, solvent, surfactant, calcium source and pH were considered to obtain optimum condition. It was established that morphology, particle size and phase of the final products could be extremely affected via these parameters. It revealed that utilizing of water as solvent and NH3 as the base, provided octahedral and hierarchical self-assemblies nanostructures, respectively.
  1. Zhang Y, Yang F, Yang J, Tang Y, Yuan P, Solid State Commun., 133, 759 (2005)
  2. Anicete-Santos M, Orhan E, de Maurera MAMA, Simoes LGP, Souza AG, Pizani PS, Leite ER, Varela JA, Andres J, Beltran A, Longo E, Phys. Rev., B, Condens. Matter, 75, 165105 (2007)
  3. Ryu JH, Yoon JW, Shim KB, Solid State Commun., 133, 657 (2005)
  4. Ryu JH, Yoon JW, Lim CS, Oh WC, Shim KB, J. Alloy. Compd., 390, 245 (2005)
  5. Marques APA, de Melo DMA, Paskocimas CA, Pizani PS, Joya MR, Leite ER, Longo E, J. Solid State Chem., 179, 671 (2006)
  6. Fu HB, Lin J, Zhang LW, Zhu YF, Appl. Catal. A: Gen., 306, 58 (2006)
  7. Raj AMES, Mallika C, Sreedharan OM, Nagaraja KS, Mater. Lett., 53, 316 (2002)
  8. Sundaram R, Nagaraja KS, Mater. Res. Bull., 39(4-5), 581 (2004)
  9. Pullar RC, Farrah S, Alford NM, J. Eur. Ceram. Soc., 27, 1059 (2007)
  10. Zhang G, Jia R, Wu Q, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 128, 254 (2006)
  11. Thongtem T, Kungwankunakorn S, Kuntalue B, Phuruangrat A, Thongtem S, J. Alloy. Compd., 506, 475 (2010)
  12. Shahri Z, Bazarganipour M, Salavati-Niasari M, Superlattices Microstruct., 63, 258 (2013)
  13. Gholami T, Salavati-Niasari M, Bazarganipour M, Noori E, Superlattices Microstruct., 61, 33 (2013)
  14. Salavati-Niasari M, Shoshtari-Yeganeh B, Bazarganipour M, Superlattices Microstruct., 58, 20 (2013)
  15. Noori E, Salavati-Niasari M, Bazarganipour M, Gholami T, J. Cluster Sci., 24, 1171 (2013)
  16. Phuruangrat A, Thongtem T, Thongtem S, J. Ceram. Soc. Jpn., 116, 605 (2008)
  17. Cavalcante LS, Sczancoski JC, Tranquilin RL, Joya MR, Pizani PS, Varela JA, Longo E, J. Phys. Chem. Solids, 69, 2674 (2008)
  18. Cavalcante LS, Sczancoski JC, Espinosa JWM, Varela JA, Pizani PS, Longo E, J. Alloy. Compd., 474, 195 (2009)
  19. Cavalcante LS, Sczancoski JC, Lima LF, Espinosa JWM, Pizani PS, Varela JA, Longo E, Cryst. Growth Des., 9, 1002 (2009)
  20. Sczancoski JC, Cavalcante LS, Joya MR, Varela JA, Pizani PS, Longo E, Chem. Eng. J., 140(1-3), 632 (2008)
  21. Graser R, Pitt E, Scharmann A, Zimmerer G, Phys. Status Solidi B-State Phys., 69, 359 (1975)
  22. Johnson LF, Boyd GD, Nassau K, Soden RR, Phys. Rev., 126, 1406
  23. Hu YS, Zhuang WD, Ye HQ, Wang DH, Zhang SS, Huang XW, J. Alloy. Compd., 390, 226 (2005)
  24. Barbosa LB, Ardila DR, Cusatis C, Andreeta JP, J. Cryst. Growth, 235(1-4), 327 (2002)
  25. Neeraj S, Kijima N, Cheetham AK, Chem. Phys. Lett., 387(1-3), 2 (2004)
  26. Longo VM, de Figueiredo AT, Campos AB, Espinosa JWM, Hernandes AC, Taft CA, Sambrano JR, Varela JA, Longo E, J. Phys. Chem. A, 112(38), 8920 (2008)
  27. Gao DJ, Li Y, Lai X, Wei YY, Bi JA, Li Y, Liu MJ, Mater. Chem. Phys., 126(1-2), 391 (2011)
  28. Teshima K, Yubuta K, Sugiura S, Fujita Y, Suzuki T, Endo M, Shishido T, Oishi S, Cryst. Growth Des., 6, 1598 (2006)
  29. Mikhailik VB, Kraus H, Miller G, Mykhaylyk MS, Wahl D, J. Appl. Phys., 97, 083523 (2005)
  30. Barbosa LB, Ardila DR, Cusatis C, Andreeta JP, J. Cryst. Growth, 235(1-4), 327 (2002)
  31. Yang P, Li C, Wang W, Quan Z, Gai S, Lin J, J. Solid State Chem., 182, 2510 (2009)
  32. Ryu JH, Yoon JW, Lim CS, Oh WC, Shim KB, J. Alloy. Compd., 390, 245 (2005)
  33. Liu Y, Chu Y, Mater. Chem. Phys., 92(1), 59 (2005)
  34. Lei F, Yan B, J. Solid State Chem., 181, 855 (2008)
  35. Zhang C, Shen EH, Wang EB, Kang ZH, Gao L, Hu CW, Xu L, Mater. Chem. Phys., 96(2-3), 240 (2006)
  36. Gong Q, Qian XF, Ma XD, Zhu ZK, Cryst. Growth Des., 6, 1821 (2006)
  37. Li ZH, Du JM, Zhang JL, Mu TC, Gao YN, Han BX, Chen J, Chen JW, Mater. Lett., 59, 64 (2005)
  38. Phuruangrat A, Thongtem T, Thongtem S, J. Alloy. Compd., 481, 568 (2009)
  39. Krishnan CV, Munoz-Espi R, Li Q, Burger C, Chu B, Chin. J. Polym. Sci., 27, 11 (2009)
  40. Compos AB, Simoes AZ, Longo E, Varela JA, Longo VM, De Figueiredo AT, De Vicente FS, Hernandes AC, Appl. Phys. Lett., 91, 051923 (2007)
  41. Marques VS, Cavalcante LS, Sczancoski JC, Alcatara AFP, Orlandi MO, Moraes E, Longo E, Varela JA, Li MS, Santos MRM, Cryst. Growth Des., 10, 4752 (2010)
  42. Liu YF, Xia LL, Lu YN, Dai SH, Takeguchi M, Hong HM, Pan ZG, J. Colloid Interface Sci., 381, 24 (2012)