화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.13, No.10, 645-650, October, 2003
Pr 6 O 11 계 ZnO 바리스터 세라믹스의 미세구조 및 전기적 특성에 미치는 Dy 2 O 3 첨가의 영향
Influence of Dy 2 O 3 Addition on Microstructure and Electrical Properties of Pr 6 O 11 Varistor Ceramics
E-mail:
The microstructure and electrical characteristics of Pr 6 O 11 -based ZnO varistor ceramics composed of ZnO?Pr 6 O 11 / ?CoO?Cr 2 O 3 - Dy 2 O 3 -based ceramics were investigated with Dy 2 O 3 content in the range of 0.0∼2.0 mol%. As Dy 2 O 3 content was increased, the average grain size was decreased in the range of 18.6∼4.7 μm and the density of the ceramic was decreased in the range of 5.53∼4.34 g/㎤. While, the varistor voltage was increased in the range of 39.4∼436.6 V/mm and the nonlinear exponent was in the range of 4.5∼66.6 with increasing Dy 2 O 3 content. The addition of Dy 2 O 3 highly enhanced the nonlinear properties of varistors, compared with the varistor without Dy 2 O 3 . In particular, the varistor with Dy 2 O 3 content of 0.5 mol% exhibited the highest nonlinearity, in which the nonlinear exponent is 66.6 and the leakage current is 1.2 μA . The donor concentration and the density of interface states were decreased in the range of (4.19∼0.33) {\times}10 18 //㎤ and (5.38∼1.74) {\times}10 12 cm 2 , respectively, with increasing Dy 2 O 3 content. The minimum dissipation factor of 0.0302 was obtained from 0.5mol% Dy 2 O 3 .
  1. Levinson LM, Philipp HR, Amer. Ceram. Soc. Bull., 65, 639 (1986)
  2. Gupta TK, J. Amer. Ceram. Soc, 73, 1817 (1990)
  3. Shichimiya S, Yamaguchi M, Furuse N, Kobayashi M, Ishibe S, IEEE Trans. Pow. Deliv., 13, 465 (1998)
  4. Alles AB, Burdick VL, J. Appl. Phys., 70, 6883 (1991)
  5. Alles AB, Puskas R, Callahan G, Burdick VL, J. Amer. Ceram. Soc., 76, 2098 (1993)
  6. Lee YS, Liao KS, Tseng TY, J. Amer. Ceram. Soc, 79, 2379 (1996)
  7. Nahm CW, Park CH, J. Mater. Sci., 35(12), 3037 (2000)
  8. Nahm CW, Mater. Lett., 47, 182 (2001)
  9. Nahm CW, Jung YC, Kim HS, J. KIEEME, 15, 244 (2002)
  10. Nahm CW, Kim HS, J. KIEEME, 15, 664 (2002)
  11. Nahm CW, Kim HS, J. KIEEME, 15, 776 (2002)
  12. Nahm CW, J. Mater. Sci. Lett., 21(3), 201 (2002)
  13. Nahm CW, Kim HS, Mater. Lett., 56, 379 (2002)
  14. Nahm CW, Shin BC, J. Mater. Sci. Mater. Electron., 13, 111 (2002)
  15. Nahm CW, Kim HS, Mater. Lett., 57, 1544 (2003)
  16. Nahm CW, Shin BC, Mater. Lett., 57, 1322 (2003)
  17. Nahm CW, Mater. Lett., 57, 1317 (2003)
  18. Wurst JC, Nelson JA, J. Amer. Ceram. Soc, 55, 109 (1972)
  19. Mukae K, Tsuda K, Nagasawa I, J. Appl. Phys., 50, 4475 (1979)
  20. Hozer L, Semiconductor ceramics; grain boundary effects, Ellis Horwood, 21 (1994) (1994)
  21. Levinson LM, Philipp HR, Am. Ceram. Soc. Bull., 65, 639 (1986)
  22. Mahan GD, J. Appl. Phys., 54, 3825 (1983)
  23. Nahm CW, Jung YC, Kor. J. Mat. Res., 7, 1033 (1997)