Korean Journal of Materials Research, Vol.13, No.10, 677-682, October, 2003
열탄화법을 사용한 탄화규소 나노와이어의 성장
Growth of SiC Nanowire Using Carbothermal Reduction Method
E-mail:
SiC nanowires were synthesized by carbothermal reduction using metal catalysts. Synthesized nanowires had mean diameters of 30∼50 nm and several length. The kind of catalysts affects form of SiC nanowire because of difference of growth mechanisms. These differences were made by catalyst's physical property and relative activities to the source gas. Ni acted a conventional catalyst of VLS growth mechanism. But, Case of Fe, SiC nanowire was grown by stable VLS growth mechanism without relation of growth conditions. SiC nanowire was grown by two step growth model using Cr catalyst. Conversion ratios to the SiC nanowire were increased with growth conditions. Case of Cr, conversion ratio was about 45% that was higher than other catalyst used. This high conversion ratio was obtained by the addition VS growth to radial direction on the as-grown nanowires.
- Kordina O, Bjorketun LO, Henry A, Hallin C, Glass RC, Hultman L, Sundgren JE, Janzen E, J. Crystal Growth, 154(3), 303 (1995)
- Bonard JM, Kind H, Stockli T, Nilson LO, Solid State Electronics, 45(6), 893 (2001)
- Chen LC, Chang SW, Chang CS, Wen CY, Wu JJ, Chen YF, Huang YS, Chen KH, J. Phys. Chem. Solids, 62(9), 1567 (2001)
- He M, Minus I, Zhou P, Mohammed SN, Halpern JB, Jacobs R, Sarney WL, Riba LS, Vispute RD, Appl. Phys. Lett., 77(22), 3731 (2000)
- Zhang HZ, Kong YC, Wang YZ, Du X, Bai ZG, Wang JJ, Yu DP, Ding Y, Hang QL, Feng SQ, Solid State Comm., 109(11), 677 (1999)
- Xu B, He H, Boussaad S, Tao NJ, Electrochimica Acta, 48(21), 385 (2003)
- Milewski JV, Gac FD, Petrovic JJ, Skaggs SR, J. Mater. Sci., 20, 1160 (1985)
- Dai HJ, Wang EW, Lu YZ, Fang SS, Liber CM, Nature, 375(9), 769 (1995)
- Meng GW, Zhang LD, Mo CM, Phillipp F, Qin Y, Li HJ, Feng SP, Zhang SY, Mater. Res. Bull., 34(5), 783 (1999)
- Tang CC, Fan SS, Dang HY, Zhao JH, Zhang C, Li P, Gu Q, J. Cryst. Growth, 210(4), 595 (2000)
- Shi WS, Zheng YF, Peng HY, Wang N, Lee CS, Lee ST, J. Am. Ceram. Soc., 83(12), 3228 (2000)
- Li YB, Xie SS, Zou XP, Tang DS, Jiu ZQ, Zhou WY, Wang G, J. Crystal Growth, 223(2), 125 (2000)
- Rho DH, Kim JS, Byun DJ, Yang JW, Kim NR, Korean J. Mater. Res., 13(6), 404 (2003)
- Givargizov EI, J. Crystal Growth, 31(1), 20 (1975)
- Pan ZW, Xie SS, Sun LF, Wang G, Chem. Phys. Lett., 299(1), 97 (1999)
- Lee CJ, Park JH, Park J, Chem. Phys. Lett., 323(6), 560 (2000)
- Bai ZG, Yu DP, Zhang HZ, Ding Y, Wang YP, Gai XZ, Hang QL, Xiong GC, Feng SQ, Chem. Phys. Lett., 303(3), 311 (1999)
- Yumoto H, Hasiguti R, Watanabe T, Igata N, J. Crystal growth, 87(1), 1 (1988)
- Givargizov EI, J. Crystal Growth, 20(3), 217 (1973)
- Zhou XT, Lai HL, Peng HY, Au FCK, Liao LS, Wang N, Bello I, Lee CS, Lee ST, Chem. Phys. Lett., 318(1), 58 (2000)
- Zhang Y, Wang N, He R, Chen X, Zhou J, Solid State Commun., 118(11), 595 (2001)
- Nutt SR, J. Am. Ceram. Soc, 71(3), 149 (1988)
- Knowels KM, Ravichandran MV, J. Am. Ceram. Soc, 80(5), 1165 (1997)
- Zhang Y, Wang N, Gao S, He R, Miaigno S, Zhu I, Zhang X, Chem. Mater., 14(8), 3564 (2002)
- Han W, Redlich P, Ernst F, Appl. Phys. Lett., 75(13), 1875 (1999)
- Li HJ, Li ZJ, Meng AL, Li KZ, Zhang XN, Xu YP, J. Alloy. Compd., 352(2), 279 (2003)
- Satishkumar BC, Thomas PJ, Govindaraj A, Rao CNR, Appl. Phys. Lett., 77(16), 2530 (2000)
- Zhou XT, Wang N, Au FCK, Lai HL, Peng HY, Bello I, Lee CS, Mater. Sci. Eng. A, 286, 119 (2000)